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SPARSE SERIAL TESTS OF UNIFORMITY FOR RANDOM
NUMBER GENERATORS

PIERRE L’ECUYER, RICHARD SIMARD, AND STEFAN WEGENKITTL*

Abstract. Different versions of the serial test for testing the uniformity and independence of
vectors of successive values produced by a (pseudo)random number generator are studied. These
tests partition the t-dimensional unit hypercube into k cubic cells of equal volume, generate n points
(vectors) in this hypercube, count how many points fall in each cell, and compute a test statistic
defined as the sum of values of some univariate function f applied to these k individual counters. Both
the overlapping and the non-overlapping vectors are considered. For different families of generators,
such as the linear congruential, Tausworthe, nonlinear inversive, etc., different ways of choosing these
functions and of choosing k are compared, and formulas are obtained for the (estimated) sample size
required to reject the null hypothesis of i.i.d. uniformity as a function of the period length of the
generator. For the classes of alternatives that correspond to linear generators, the most efficient tests
turn out to have k > mn (in contrast to what is usually done or recommended in simulation books)
and use overlapping vectors.

Key words. Random number generation, goodness-of-fit, serial test, collision test, m-tuple test,
multinomial distribution, OPSO.

1. Introduction. The aim of this paper is to examine certain types of serial
tests for testing the uniformity and independence of the output sequence of general-
purpose uniform random number generators (RNGs) such as those found in software
libraries. These RNGs are supposed to produce “imitations” of mutually independent
random variables uniformly distributed over the interval [0,1) (i.i.d. U(0, 1), for short).
Testing an RNG whose output sequence is Uy, U1, Us, ... amounts to testing the null
hypothesis Ho: “The U; are i.i.d. U(0,1).”

To approximate this multidimensional uniformity, good RNGs are usually de-
signed (theoretically) so that the multiset ¥, of all vectors (ug, . ..,u;—1) of their first
t successive output values, from all possible initial seeds, covers the t-dimensional
unit hypercube [0,1)" very evenly, at least for ¢ up to some tq, where ¢y is chosen
somewhere between 5 and 50 or so. When the initial seed is chosen randomly, this
W, can be viewed in some sense as the sample space from which points are chosen at
random to approximate the uniform distribution over [0,1)%. For more background
on the construction of RNGs, see, for example, [13, 17, 21, 35].

For large t, the structure of W, is typically hard to analyze theoretically. Moreover,
even for a small ¢, one would often generate several successive t-dimensional vectors
of the form (uy;, ..., us+¢—1), @ > 0. Empirical statistical testing then comes into play
because the dependence structure of these vectors is hard to analyze theoretically. An
excessive regularity of W, implies that statistical tests should fail when their sample
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sizes approach the period length of the generator. But how close to the period length
can one get before trouble begins?

Several goodness-of-fit tests for Hy have been proposed and studied in the past
(see, e.g., [13, 9, 26, 41] and references therein). Statistical tests can never certify for
good an RNG. Different types of tests detect different types of deficiencies and the
more diversified is the available battery of tests, the better.

A simple and widely used test for RNGs is the serial test [1, 6, 8, 13], which
operates as follows. Partition the interval [0,1) into d equal segments. This deter-
mines a partition of [0,1)! into k = d' cubic cells of equal size. Generate nt random

numbers Uy, ..., Ups—1, construct the points Vy; = (Ui, ..., Ugiye—1), 0 =0,...,n—1,
and let X; be the number of these points falling into cell j, for j =0,...,k —1. Un-
der Hy, the vector (X, ..., Xr—1) has the multinomial distribution with parameters

(n,1/k,...,1/k). The usual version of the test, as described for example in [6, 13, 14]
among other places, is based on Pearson’s chi-square statistic

k—1 k—
X; —\)? 1
1.1 X2:§ Li___:_ _E:Xz
( ) j=0 A n )\ :0 J )

where A\ = n/k is the average number of points per cell, and the distribution of X2
under H is approximated by the chi-square distribution with k—1 degrees of freedom
when A > 5 (say).

In this paper, we consider test statistics of the general form

k—1
(1.2) Y= far(X
j=0

where f, j is a real-valued function which may depend on n and k. We are interested
for instance in the power divergence statistic

(1.3) }:51+5 [(X5/A)° —1]

where § > —1 is a real-valued parameter (by § = 0, we understand the limit as
d — 0). One could also consider § — —1 and § < —1, but this seems unnecessary
in the context of this paper. Note that D; = X?2. The power divergence statistic
is studied in [39] and other references given there. A more general class is the -
divergence family, where f, (X;) = Ap(X,;/A) (see, e.g., [4, 34]). Other forms of
fni that we consider are f, x(x) = I[x > b] (where I denotes the indicator function),
foi(z) = Iz =0], and f, x(z) = max(0,z — 1), for which the corresponding Y is the
number of cells with at least b points, the number of empty cells, and the number of
collisions, respectively.

We are interested not only in the dense case, where A > 1, but also in the sparse
case, where X is small, sometimes much smaller than 1. We also consider (circular)
overlapping versions of these statistics, where U; = U;_,, for ¢ > n and V; is replaced

by V;.
In a slightly modified setup, the constant n is replaced by a Poisson random
variable 1 with mean n. Then, (Xo,...,Xr_1) is a vector of i.i.d. Poisson random

variables with mean A instead of a multinomial vector, and the distribution of Y
becomes easier to analyze because of this i.i.d. property. For large k and n, however,
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the difference between the two setups is practically negligible, and our experiments
are with n = n for simplicity and convenience.
A first-order test observes the value of Y, say y, and rejects Hy if the p-value

p:P[Y>y|H0]7

is much too close to either 0 or 1. The function f is usually chosen so that p too
close to 0 means that the points tend to concentrate in certain cells and avoid the
others, whereas p close to 1 means that they are distributed in the cells with excessive
uniformity. So p can be viewed as a measure of uniformity, and is approximately a
U(0,1) random variable under Hy if the distribution of Y is approximately continuous.

A second-order (or two-level) test would obtain N “independent” copies of Y,
say Y7,...,Yn, compute F(Y7),...,F(Yy) where F is the theoretical distribution
of Y under Hp, and compare their empirical distribution to the uniform. Such a
two-level procedure is widely applied when testing RNGs (see [6, 13, 16, 29, 30]).
Its main supporting arguments are that it tests the RNG sequence not only at the
global level but also at a local level (i.e., there could be bad behavior over short
subsequences which “cancels out” over larger subsequences), and that it permits one
to apply certain tests with a larger total sample size (for example, the memory size of
the computer limits the values of n and/or k in the serial test, but the total sample
size can exceed n by taking N > 1). Our extensive empirical investigations indicate
that for a fixed total sample size Nn, when testing RNGs, a test with N = 1 is
typically more efficient than the corresponding test with N > 1. This means that
for typical RNGs, the type of structure found in one (reasonably long) subsequence
is usually found in (practically) all subsequences of the same length. In other words,
when an RNG started from a given seed fails spectacularly a certain test, it usually
fails that test for most admissible seeds.

The common way of applying serial tests to RNGs is to select a few specific
generators and some arbitrarily chosen test parameters, run the tests, and check if
‘Ho is rejected or not. Our aim in this paper is to examine in a more systematic
way the interaction between the serial tests and certain families of RNGs. From each
family, we take an RNG with period length near 2¢, chosen on the basis of the usual
theoretical criteria, for integers e ranging from 10 to 40 or so. We then examine,
for different ways of choosing k and constructing the points V;, how the p-value of
the test evolves as a function of the sample size n. The typical behavior is that
p takes “reasonable” values for a while, say for n up to some threshold ng, then
converges to 0 or 1 exponentially fast with n. Our main interest is to examine the
relationship between ng and e. We adjust (crudely) a regression model of the form
logy ng = ye+v+€ where v and v are two constants and € is a small noise. The result
gives an idea of what size (or period length) of RNG is required, within a given family,
to be safe with respect to these serial tests for the sample sizes that are practically
feasible on current computers. It turns out that for popular families of RNGs such as
the linear congruential, multiple recursive, and shift-register, the most sensitive tests
choose k proportional to 2¢ and yield v = 1/2 and 1 < v < 5, which means that ng is
a few times the square root of the RNG’s period length.

The results depend of course on the choice of f in (1.2) and on how d and t are
chosen. For example, for linear congruential generators (LCGs) selected on the basis
of the spectral test [6, 13, 24], the serial test is most sensitive when k & 2¢, in which
case ng = O(Vk). These “most efficient” tests are very sparse (A < 1). Such large
values of k yield more sensitive tests than the usual ones (for which k& < 2°¢ and
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A > 5 or so) because the excessive regularity of LCGs really shows up at that level
of partitioning. For k > 2° the partition eventually becomes so fine that each cell
contains either 0 or 1 point, and the test loses all of its sensitivity.

For fixed n, the non-overlapping test is typically slightly more efficient than the
overlapping one, because it relies on a larger amount of independent information.
However, the difference is typically almost negligible (see Section 5.3) and the non-
overlapping test requires ¢ times more random numbers. If we fix the total number
of U;’s that are used, so the non-overlapping test is based on n points whereas the
overlapping one is based on nt points, for example, then the overlapping test is typi-
cally more efficient. It is also more costly to compute and its distribution is generally
more complicated. If we compare the two tests for a fixed computing budget, the
overlapping one has an advantage when t is large and when the time to generate the
random numbers is an important fraction of the total CPU time to apply the test.

In Section 2, we collect some results on the asymptotic distribution of Y for
the dense case where k is fixed and n — oo, the sparse case where both k — oo
and n — oo so that n/k — § < oo, and the very sparse case where n/k — 0. In
Section 3 we do the same for the overlapping setup. In Section 4 we briefly discuss the
efficiency of these statistics for certain classes of alternatives. Systematic experiments
with these tests and certain families of RNGs are reported in Section 5. In Section 6,
we apply the tests to a short list of RNGs proposed in the literature or available in
software libraries and widely used. Most of these generators fail miserably. However,
several recently proposed RNGs are robust enough to pass all these tests, at least for
practically feasible sample sizes.

2. Power Divergence Test Statistics for Non-Overlapping Vectors. We
briefly discuss some choices of f,  in (1.2) which correspond to previously introduced
tests. We then provide formulas for the exact mean and variance, and limit theorems
for the dense and sparse cases.

2.1. Choices of f,, . Some choices of f,  are given in Table 2.1. In each case,
Y is a measure of clustering: It tends to increase when the points are less evenly
distributed between the cells. The well-known Pearson and loglikelihood statistics,
X? and G?, are both special cases of the power divergence, with § = 1 and § — 0,
respectively [39]. H is related to G2 via the relation H = log, (k) — G?/(2n1n2). The
statistics Ny, Wp, and C' count the number of cells that contain exactly b points (for
b > 0), the number of cells that contain at least b points (for b > 1), and the number
of collisions (i.e., the number of times a point falls in a cell that already has a point in
it), respectively. They are related by No=k—W; =k—n+C, W, = Ny +---+ N,
and C =Wy + -+ W,.

2.2. Mean and Variance. Before looking at the distribution of Y, we give
expressions for computing its exact mean and variance under H.

If the number of points is fixed at n, (Xp,...,Xg—1) is multinomial. Denoting
w1 = E[fn 1(X;)], one obtains after some algebraic manipulations:

ey ewl=m = Y (1) S e,

Var[Y] = E (f(X;) — )
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TABLE 2.1
Some choices of fy 1 and the corresponding statistics.

Y frk(x) name
Ds  2z[(x/N)? —1]/(6(1 +9)) power divergence
X? (x —A)?/A Pearson
G? 2z In(x/N\) loglikelihood
—H (x/n)logy(z/n) negative entropy
Ny I[z =] number of cells with exactly b points
W Iz > b number of cells with at least b points
No Iz = 0] number of empty cells
C (x = 1) I[z > 1] number of collisions

= kB[ (£(X0) = 1)?| + k(k = 1) B[(f(X0) = )(f(X1) = )]

(22 =3 (1) S v -y

z=0
+l§§<z>(n;x>(k—ng:?wamgw)_mz

; zjmin(”fj“) (Z) ( " w) (k= (k=2

x=0 y=0
(f(x) =) (f(y) — ).

Although containing a lot of summands, these formulas are practical in the sparse
case since for the Y’s defined in Table 2.1, when n and k are large and A = n/k is
small, only the terms for small z and y in the above sums are non-negligible. These
terms converge to 0 exponentially fast as a function of x + y, when x + y — oco. The
first two moments of Y are then easy to compute by truncating the sums after a small
number of terms. For example, with n = k = 1000, the relative errors on E[H] and
Var[H] are less than 10710 if the sums are stopped at x,y = 14 instead of 1000, and
less than 1071° if the sums are stopped at z,y = 18. A similar behavior is observed
for the other statistics.

The expressions (2.1) and (2.2) are still valid in the dense case, but for larger A,
more terms need to be considered. Approximations for the mean and variance of Dg
when A > 1, with error terms in o(1/n), are provided in [39], Chapter 5, page 65.

In the Poisson setup, where n is the mean of a Poisson random variable, the X
are i.i.d. Poisson(\) and the expressions become

n ATe—A
(2.3) BY)=hu = kY 5 f),
" /\“”em__)‘0
(2.4) Var[Y] = k’z ] (f(x) = p)*.
=0 :

2.3. Limit Theorems. The limiting distribution of Dy is a chi-square in the
dense case and a normal in the sparse case. Two-moment-corrected versions of these
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results are stated in the next proposition. This means that D((;C) and D((;N) in the
proposition have exactly the same mean and variance as their asymptotic distribu-
tion (e.g., 0 and 1 in the normal case). Read and Cressie [39] recommend this type
of standardization, which tends to be closer to the asymptotic distribution than a
standardization by the asymptotic mean and variance. The two-moment corrections
become increasingly important when 0 gets away from around 1. The mean and
variance of Ds can be computed as explained in the previous subsection. Another
possibility would be to correct the distribution itself, e.g., using Edgeworth-type ex-
pansions [39], page 68. This gives extremely complicated expressions, due in part to
the discrete nature of the multinomial distribution, and the gain is small.

PROPOSITION 2.1. For § > —1, the following holds under Hy.

(i) [Dense case| If k is fized and n — oo, in the multinomial setup

D5 —kp+ (k-1
pLo) def Ds pt(k=loc

2(k—1
p= x( ),

where o2 = Var[Ds]/(2(k — 1)), = denotes convergence in distribution, and
X2 (k — 1) is the chi-square distribution with k — 1 degrees of freedom. In the
Poisson setup, D((;C) = x2(k) instead.

(ii) [Sparse case] For both the multinomial and Poisson setups, if k — oo, n —
00, and n/k — Ao where 0 < A\g < 00, then

Ds —k
D((;N) def Ds H

= N(0,1
o (0,1).

where 0% = Var[Ds] and N(0,1) is the standard normal distribution.

Proof. For the multinomial setup, part (i) can be found in [39], page 46, whereas
part (ii) follows from Theorem 1 of [11], by noting that all the X;’s here have the same
distribution. The proofs simplify for the Poisson setup, due to the independence. The
Z; = (X; —n/k)/\/n/k are ii.d. and asymptotically N(0,1) in the dense case, so
their sum of squares, which is X2, is asymptotically x2(k). O

We now turn to the counting random variables Ny, W3, and C. These are not
approximately chi-square in the dense case. In fact, if n — oo for fixed k, it is clear
that N, — 0 with probability 1 for any fixed b. This implies that W, — k and
C — n — k, so these random variables are all degenerate.

For the Poisson setup, each X; is Poisson(\), so py def P[X; = b] = e *\0/b! for
b >0 and N, is BN(k, pp), a binomial with parameters k and p. If k is large and p,
is small, N, is thus approximately Poisson with (exact) mean

nbe=?

= Eb1p)

The next result covers other cases as well.
PROPOSITION 2.2. For the Poisson or the multinomial setup, under Hy, suppose
that k — 0o and n — oo, and let Moo, Yo, and Ao denote positive constants.
(i) If b > 2 and n®/(k*~1b!) — Ao, then Wy, = Nj, = Poisson()\y). For b =2,
one also has C = N.
(ii) For b=0, if n/k —In(k) — 7o, then Ny = Poisson(e= ).
(iii) If k — 0o and n/k — Ao > 0, then for Y = Ny, Wy, or C,

Y - E[Y]
(Var[¥])1/2

(2.5) E[Ny] = kpy for b > 0.

= N(0,1).
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Proof. In (i), since A = n/k — 0, one has for the Poisson case E[Npt1]/E[Np)
M(b+1) — 0 and E[Wyi)/EIN,| = B[S, Nowil /EINs) = 2, AbL/ (b + i)
bI> 2, Ai/il = bl(e* — 1) — 0. The relative contribution of W41 to the sum W,
Np+ W1 (a sum of correlated Poisson random variables) is then negligible compared
with that of Ny, so Ny and W, have the same asymptotic distribution (this follows
from Lemma 6.2.2 of [2]). Likewise, under these conditions with b = 2, C' has the
same asymptotic distribution as Na, because C'= Ny + Y ;o ,(i — 1)N; and therefore
BIC — NaJ/E[N] = B[54 — )N /E[Ns] = 2505 (i =~ DA2/il < 3255, M /51 =
e* — 1. For the multinomial setup, it has been shown (see [2], Section 6.2) that N,
and W, for b > 2, are asymptotically Poisson(kpy,) when A — 0, the same as for the
Poisson setup. The same argument as for W5 applies for C, using again their Lemma
6.2.2, and this proves (i). For b = 0, for the Poisson setup, we saw already that Ny
is asymptotically Poisson(\s) if ke /% — Ay, i.e., if In(k) — n/k — In(Ass) = —70.
For the multinomial case, the same result follows from Theorem 6.D of [2], and this
proves (ii). Part (iii) is obtained by applying Theorem 1 of [11]. O

The exact distributions of C' and Ny under Hj, for the multinomial setup, are
given by

Al

P(C=¢)=P(No=k—n+c¢c)=

k(k—l)--~(k—n+c+1){ n }

kn n—c

where the { : } are the Stirling numbers of the second kind (see [13], page 71,

where an algorithm is also given to compute all the non-negligible probabilities in
time O(nlogn)).

In our implementation of the test based on C, we used the Poisson approximation
for A < 1/32, the normal approximation for A > 1/32 and n > 25 and the exact
distribution otherwise.

3. Overlapping vectors. For the overlapping case, let Xt((}) be the number of

overlapping vectors V;, i = 0,...,n — 1, that fall into cell j. Novx’f7 the formulas (2.1)
and (2.2) for the mean and variance, and the limit theorems in Propositions 2.1 and
2.2, no longer stand. The analysis is more difficult than for the disjoint case because
in general P[Xt(,? = 2] depends on ¢ and P[Xt(z) =z, Xt(Z-) = y] depends on the pair
(,7) in a non-trivial way.

Theoretical results have been available in the overlapping multinomial setup, for
the Pearson statistic in the dense case. Let

vo N~ X
)~ Z n/k

J=0

and let X (215_1) be the equivalent of X (Qt) for the overlapping vectors of dimension ¢ — 1:

o - k' —1 (Xt(i)Lj _ n/k’)Q
(=1 — Z n/k'
=0
where k' = d*~'. Consider the statistic X2 = X2y — X{,_,). Good [8] has shown
that E[X(Qt)] = d' — 1 exactly (see his Eq. (5) and top of page 280) and that when

n — oo for d and t fixed, X2 = y2(k — k') (see page 284). This setup, usually with
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n/k > 5 or so, is called the overlapping serial test or the m-tuple test in the literature
and has been used previously to test RNGs (e.g., [1, 29, 30]). The next proposition
generalizes the result of Good to the power divergence statistic in the dense case.
Further generalization is given by Theorem 4.2 of [43].

ProrosiTION 3.1. Let

k—1
SN 2y [x a0 —
(3.1) Ds —;5(1%))(@]. [x(9/a =1],

the power divergence statistic for the t-dimensional overlapping vectors, and define
Ds 1y = Ds 1y — Ds,(t—1)- Under Ho, in the multinomial setup, if 6 > —1, k is fized,

and n — oo, D57(t) = x2(dt —d'~ ).
Proof. The result is well-known for § = 1. Moreover, a Taylor series expansion

)Oj)/)\ — 1 easily shows that Dj ;) = Dy ) + 0p(1), where

0p(1) — 0 in probability as n — oo (see [39], Theorem A6.1). Therefore, ﬁ57(t) has

of Ds 1) in powers of Xt(

the same asymptotic distribution as DL(t) and this completes the proof. O
For the sparse case, where k,n — oo and n/k — A9 where 0 < )y < oo, our
simulation experiments support the conjecture that

X% def X2 (k- F) = N(0,1).
2(k — k")

The overlapping empty-cells-count test has been discussed in a heuristic way in a
few papers. For t = 2, Marsaglia [30] calls it the overlapping pairs sparse occupancy
(OPSO) and suggests a few specific parameters, without providing the underlying the-
ory. Marsaglia and Zaman [32] speculate that Ny should be approximately normally
distributed with mean ke~ and variance ke ~*(1—3e~*). This make sense only if X is
not too large or not too close to zero. We studied empirically this approximation and
found it reasonably accurate only for 2 < A < 5 (approximately). The approximation
could certainly be improved by refining the variance formula.

Proposition 2.2 (i) and (ii) should hold in the overlapping case as well. Our
simulation experiments indicate that the Poisson approximation for C' is very accurate
for (say) A < 1/32, and already quite good for A < 1, when n is large.

4. Which Test Statistic and What to Expect?. The LFSR, LCG, and MRG
generators in our lists are constructed so that their point sets ¥, over the entire period
are superuniformly distributed. Thus, we may be afraid, if k£ is large enough, that
very few cells (if any) contain more than 1 point and that Dgs, C, Ng, Ny and W}
for b > 2 are smaller than expected. In the extreme case where C' = 0, assuming
that the distribution of C' under Hy is approximately Poisson with mean n?/(2k),
the left p-value of the collision test is pr, = P[C < 0 | Ho] ~ e=""/¥) For a fixed
number of cells, this p-value approaches 0 exponentially fast in the square of the
sample size n. For example, pr, ~ 3.3-107%, 1.3-1074, and 3.4-107°6 for n = 4V/k,
8vk, and 16Vk, respectively. Assuming that k is near the RNG’s period length, i.e.,
k =~ 2°, this means that the test starts to fail abruptly when the sample size exceeds
approximately 4 times the square root of the period length. As we shall see, this is
precisely what happens for certain popular classes of generators. If we use the statistic
Wy, instead of C, in the same situation, we have py, = P[W, <0 | Hy| = e*"b/(kb_lb!),
and the sample size required to obtain a p-value less than a fixed (small) constant is



SPARSE SERIAL TESTS 9

n = O(k(®=D/¥) for b > 2. In this setup, C' and Ny are equivalent to W5, and choosing
b > 2 gives a less efficient test.

Suppose now that we have the opposite: Too many collisions. One simple model
of this situation is the alternative H;: “The points are i.i.d. uniformly distributed over
k1 boxes, the other k—k; boxes being always empty.” Under H;, W}, is approximately
Poisson with mean \; = nPe="/*1 /(k*=1p!) (if n is large and \; is small) instead of
Ao = nbe "k /(kKP=1p). Therefore, for a given g, and z such that ag = P[W; >
xo | Ho], the power of the test at level ag is

ol e MAT
P[szx()'Hl]%l_Z:o 7l N

where zg depends on b. When b increases, for a fixed oy, ¢ decreases and Ay decreases
as well if n/k; < b+ 1. So b = 2 maximizes the power unless n/k; is large. In fact
the test can have significant power only if A\; exceeds a few units (otherwise, with
large probability, one has W), = 0 and Hj is not rejected). This means A; = O(1),
ie, n= O(kgb_1)/b(b!)1/be”/(bk1)), which can be approximated by O(k%b_l)/b) if kq
is reasonably large. Then, b = 2 is the best choice. If ky is small, A\; is maximized
(approximately) by taking b = max(2, [n/k1] — 1).

The alternative H; just discussed can be generalized as follows: Suppose that the
k1 cells have a probability larger than 1/k, while the other k — k; cells have a smaller
probability. H; is called a hole (resp., peak, split) alternative if kq/k is near 1 (resp.,
near 0, near 1/2). We made extensive numerical experiments regarding the power of
the tests under these alternatives and found the following. Hole alternatives can be
detected only when n/k is reasonably large (dense case), because in the sparse case
one expects several empty cells anyway. The best test statistics to detect them are
those based on the number of empty cells Ny, and Ds with § as small as possible (e.g.,
—1 < § <€0). For a peak alternative, the power of Ds increases with § as a concave
function, with a rate of increase that typically becomes very small for § larger than
3 or 4 (or higher, if the peak is very narrow). The other test statistics in Table 2.1
are usually not competitive with Dy (say) under this alternative, except for W, which
comes close when b ~ n/k; (however it is hard to choose the right b because k is
generally unknown). The split alternative with the probability of the k — kq low-
probability cells equal to 0 is easy to detect and the collision test (using C' or W5) is
our recommendation. The power of Dy is essentially the same as that of C' and Ws,
for most d, because E[W3] has a negligible value, which implies that there is almost a
one-to-one correspondence between C'; W5, and Ds. However, with the small n that
suffices for detection in this situation, E[W3] is small and the distribution of Ds is
concentrated on a small number of values, so neither the normal nor the chi-square
is a good approximation of its distribution. Of course, the power of the test would
improve if the high-probability cells were aggregated into a smaller number of cells,
and similarly for the low-probability cells. But to do this, one needs to know where
these cells are a priori.

These observations extend (and agree with) those made previously by several
authors (see [39] and references therein), who already noted that for Ds, the power
decreases with § for a hole alternative and increases with § for a peak alternative.
This implies in particular that G® and H are better [worse] test statistics than X? to
detect a hole [a peak]. In the case of a split alternative for which the cell probabilities
are only slightly perturbed, X? is optimal in terms of Pitman’s asymptotic efficiency
whereas G? is optimal in terms of Bahadur’s efficiency (see [39] for details).
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5. Empirical Evaluation for RNG Families.

5.1. Selected Families of RNGs. We now report systematic experiments to
assess the effectiveness of serial tests for detecting the regularities in specific families
of small RNGs. The RNG families that we consider are named LFSR3, GoodLCG,
BadLCG2, MRG2, CombL2, InvExpl. Within each family, we constructed a list of
specific RNG instances, with period lengths near 2¢ for (integer) values of e ranging
from 10 to 40. These RNGs are too small to be considered for serious general purpose
softwares, but their study gives good indication about the behavior of larger instances
from the same families. At step n, a generator outputs a number u,, € [0, 1).

The LFSR3s are combined linear feedback shift register (LFSR) (or Tausworthe)
generators with three components, of the form

LTjn = (arjxj,n—rj + aijj,n—kj) mod 2a 1 S] < 31

32
—i . .
Ujn = g Tjns;+i-12" 5, 1<j <35
i=1
Un = Ul,n @ U2.n S3) U3, n,

where @ means bitwise exclusive-or, and (k;,7;,5;), 1 < j < 3, are constant parame-
ters selected so that the k; are reasonably close to each other, and the sequence {u,, }
has period length (2%1 — 1)(2%2 — 1)(2¥ — 1) and is maximally equidistributed (see
[19] for the definition and further details about these generators).

The GoodLCGs are linear congruential generators (LCGs), of the form

(5.1) Ty = ax,_1 mod m; Up = Tp/m,

where m is a prime near 2¢ and a is selected so that the period length is m — 1 and
so that the LCG has an excellent behavior with respect to the spectral test (i.e., an
excellent lattice structure) in up to at least 8 dimensions. The BadLCG2s have the
same structure, except that their a is chosen so that they have a mediocre lattice
structure in 2 dimensions. More details and the values of a and m can be found in
[24, 26]. The MRG2 are multiple recursive generators of order 2, of the form

(5.2) Tp = (@1Zp—1 + a2Zp—2) mod m; Up = Tp/m,

period length m? — 1, and excellent lattice structure as for the GoodLCGs [17, 21].
The CombL2s combine two LCGs as proposed in [15]:

Tjn = @jZTjn-1 mod mj, 1<j<2;
Up, = (21,0 + z2,n) mod mq)/mq,
so that the combined generator has period length (m; —1)(ms2—1)/2 and an excellent

lattice structure (see [28] for details about that lattice structure).

InvExpl denotes a family of explicit inversive nonlinear generators of period length
m, defined by

(5.3) r, = (123n)~" mod m; Uy = Tp/m,

where m is prime and (an)~! mod m = (an)™ 2
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5.2. The Log-p-values. For a given test statistic Y taking value y, let p;, =
PlY <y | Ho] and pr = P[Y >y | Ho]. We define the log-p-value of the test as

koo if 107D <pp < 107K, k>0,
(=< —k if10-F+tD) < pp <107%, k>0,
0 otherwise.

For example, / = 2 means that the right p-value is between 0.01 and 0.001. For a given
class of RNGs, given Y, ¢, and a way of choosing k, we apply the test for different
values of e and with sample size n = 27¢*", forv =...,—2,—1,0,1,2,..., where the
constant v is chosen so that the test starts to fail at approximately the same value of
v for all (or most) e. More specifically, we define ¥ (resp. v*) as the smallest values
of v for which the absolute log-p-value satisfies |¢| > 2 (resp. |¢| > 14) for a majority
of values of e. These thresholds are arbitrary.

5.3. Test Results: Examples and Summary. Tables 5.1 and 5.2 give the log-
p-values for the collision test applied to the GoodLCGs and BadLCG2s, respectively,
in ¢t = 2 dimensions, with d = |2¢/2] (so k = 2¢), and n = 2¢/2*¥. Only the log-
p-values ¢ outside of the set {—1,0,1}, which correspond to p-values less than 0.01,
are displayed. The symbols < and — mean ¢ < —14 and ¢ > 14, respectively. The
columns not shown are mostly blank on the left of the table and filled with arrows on
the right of the table. The small p-values appear with striking regularity, at about
the same v for all e, in each of these tables. This is also true for other values of e not
shown in the table. One has 7 = 2 and v* = 4 in Table 5.1, while 7 = —1 and v* =1
in Table 5.2. The GoodL.CGs fail because their structure is too regular (the left p-
values are too small because there are too few collisions), whereas the BadLLCG2s have
the opposite behavior (the right p-values are too small because there are too many
collisions; their behavior correspond to the split alternative described in Section 4).

Table 5.3 gives the values of 7 and v* for the selected RNG families, for the
collision test in 2 and 4 dimensions. All families, except InvExpl, fail at a sample size
proportional to the square root of the period length p. At n = 2 p'/2, the left or
right p-value is less than 10~!4 most of the time. The BadLCG2s in 2 dimensions are
the first to fail: They were chosen to be particularly mediocre in 2 dimensions and the
test detects it. Apart from the BadLCG2s, the generators always fail the tests due to
excessive regularity. For the GoodLCGs and LFSR3s, for example, there was never
a cell with more than 2 points in it. For the LFSR3s, we distinguish two cases: One
where d was chosen always odd and one where it was always the smallest power of 2
such that k = d* > 2¢. In the latter case, the number of collisions is always 0, since
no cell contains more than a single point over the entire period of the generator, as a
consequence of the “maximal equidistribution” property of these generators [19]. The
left p-values then behave as described at the beginning of Section 4. The InvExpl
resist the tests until after their period length is exhausted. These generators have
their point set ¥; “random-looking” instead of very evenly distributed. However,
they are much slower than the linear ones.

We applied the power divergence tests with § = —1/2,0,1,2,4, and in most cases
the p-values were very close to those of the collision test. In fact, when no cell count
X; exceeds 2 (i.e., W3 = 0, which we have observed frequently), there is a one-to-one
correspondence between the values of C' and of Dy for all 6 > —1. Therefore, all these
statistics should have similar p-values if both E[W3] and the observed value of W3 are
small (the very sparse situation). For the overlapping versions of the tests, the values
of v, I, and v* are exactly the same as those given in Table 5.3. This means that the
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TABLE 5.1
The log-p-values £ for the GoodLCGs with period length p = 2¢, for the collision test (based on
C), in t = 2 dimensions, with k = 2¢ cells, and sample size n = 2¢/24v The table entries give the
values of £. The symbols — and — mean £ < —14 and £ > 14, respectively. Here, we have U = 2
and v* = 4.

e |lv=1 v=2 v=3 v=4 v=>5
12 -3 — —
13 —11 —
14 —4 —-13 —
15 —2 -7 — —
16 -3 -8 — —
17 —2 —4 — —
18 -3 — —
19 —2 —10 — —
20 -3 -9 — —
21 —2 —4 — —
22 -3 —11 —
23 -3 -8 — —
24 -3 —12 — —
25 —8 — —
26 —2 —6 — —
27 —2 —6 — —
28 —2 — —
29 -3 —-13 — —
30 -5 — —

overlapping tests are more efficient than the non-overlapping ones, because they call
the RNG ¢ times less.

We applied the same tests with smaller and larger numbers of cells, such as
k=2°/64, k =2°/8, k =8-2° k = 64 -2° and found that 7 and v* increase when
k moves away from 2°. A typical example: For the GoodLCGs with ¢t = 2, v* = 7,
6, 5, and 7 for the four choices of k given above, respectively, whereas v* = 4 when
k = 2¢. The classical way of applying the serial test for RNG testing uses a large
average number of points per cell (dense case). We applied the test based on X? to
the GoodLCGs, with k = n/8, and found empirically v = 2/3, 7 = 3, and v* = 4.
This means that the required sample size now increases as O(p*/?) instead of O(p'/?)
as before; i.e., the dense setup with the chi-square approximation is much less efficient
than the sparse setup. We observed the same for Dgs with other values of § and other
values of ¢, and a similar behavior for other RNG families.

For the results just described, ¢ was fixed and d varied with e. We now fix d = 4
(i.e., we take the first two bits of each number) and vary the dimension as t = [e/2].
Table 5.4 gives the results of the collision test in this setup. Note the change in v for
the GoodLCGs and BadLLCG2s: The tests are less sensitive for these large values of
t.

We also experimented with two-level tests, where a test of sample size n is repli-
cated IV times independently. For the collision test, we use the test statistic C'r, the
total number of collisions over the N replications, which is approximately Poisson
with mean Nn2e~"/%/(2k) under Hy. For the power divergence tests, we use as test
statistics the sum of values of D((;N) and of D((SC)7 which are approximately N (0, N)
and x?(N(k — 1)) under Hy, respectively. We observed the following: The power
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TABLE 5.2
The log-p-values £ for the collision test, with the same setup as in Table 5.1, but for the
BadLCG2 generators. Here, v = —1 and v* = 1.

e |lv=-1 v=20 v=1 v=2
12 2 2 — —
13 3 9 —
14 5 4 — —
15 3 4 — —
16 3 12 — —
17 7 — —
18 13 — —
19 3 — —
20 4 — —
21 4 — —
22 2 11 — —
23 2 4 11 —
24 11 — —
25 4 — —
26 3 — —
27 3 4 — —
28 13 — —
29 2 2 — —
30 2 — — —

TABLE 5.3

Collision tests for RNG families, in t dimensions, with k = 2¢. Recall that U (resp. v*) is the
smallest integer v for which €| > 2 (resp. €| > 14) for a majority of values of e, in tests with sample
size n = 27tV

RNG family vy ot v v
GoodLCG 1/2 i ; g
BadLCG2 1/2 Z _31 é
LFSR3, d odd 1/2 i Z 2
LFSR3, d power of 2 | 1/2 i § i
MRG2 1/2 i :2; é
CombL2 1/2 Z ? ?
InvExpl 1 421 1 1

of a test with (IV,n) is typically roughly the same as that of the same test at level
one (N = 1) and with sample size nv/N. Single-level tests thus need a smaller total
sample size than the two-level tests to achieve the same power. On the other hand,
two-level tests are justified when the sample size n is limited by the memory size of
the computer at hand. (For n < k, the counters X, are implemented via a hashing
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TABLE 5.4
Collision tests with d = 4 divisions in each dimension and t = |e/2| dimensions.

V*

At

Generators | 7y

GoodLCG | 2/3 | 2 3
BadLCG2 | 2/3 2 4
LFSR3 12 2| 4
MRG2 1/2 7 8
CombL2 1/2 5 6
InvExpl 1 1 1

technique, for which the required memory is proportional to n instead of k). Another
way of doing a two-level test with Dy is to compute the p-values for the N replicates
and compare their distribution with the uniform via (say) a Kolmogorov-Smirnov or
Anderson-Darling goodness-of-fit test. We experimented extensively with this as well
and found no advantage in terms of efficiency, for all the RNG families that we tried.

6. What about real-life LCGs?. From the results of the preceding section
one can easily predict, conservatively, at which sample size a specific RNG from a
given family will start to fail. We verify this with a few commonly used RNGs, listed
in Table 6.1. (Of course, this list is far from exhaustive).

TABLE 6.1
List of selected generators.

LCGI. LCG with m = 23! — 1 and a = 950706376, ¢ = 0.
LCG2. LCG with m = 23! — 1 and a = 742938285, ¢ = 0.
LCGS. LCG with m = 23! — 1 and a = 630360016, ¢ = 0.
LCGA4. LCG with m = 231 — 1 and a = 16807, ¢ = 0.
LCGS5. LCG with m = 231, a = 1103515245, ¢ = 12345.
LCG®6. LCG with m = 232, a = 69069, and ¢ = 1.

LCGT. LCG with m = 28 a = 68909602460261, ¢ = 0.
LCGS. LCG with m = 298, g = 4448570937790, ¢ = 0.
LCG9. LCG with m = 248 a = 25214903917, ¢ = 11.
RLUX.  RANLUX with L = 24 (sece [12]).

WEY1. Nested Weyl with o = /2 (see [10]).

WEY2. Shuffled nested Weyl with a = /2 (see [10]).
CLCGA4. Combined LCG of [25].

CMRG96. Combined MRG in Fig. 1 of [18].

CMRG99. Combined MRG in Fig. 1 of [23].

Generators LCG1 to LCGY are well-known LCGs, based on the recurrence z; =
(ax;—1 + ¢) mod m, with output u; = x;/m at step i. LCG1 and LCG2 are rec-
ommended by Fishman [7] and a FORTRAN implementation of LCG1 is given by
Fishman [6]. LCG3 is recommended in [14], among others, and is used in the SIM-
SCRIPT IL.5 and INSIGHT simulation languages. LCG4 is in numerous software
systems, including the IBM and Macintosh operating systems, the Arena and SLAM
IT simulation languages (note: the Arena RNG has been replaced by CMRG99 after
we wrote this paper), MATLAB, the IMSL library (which also provides LCG1 and
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TABLE 6.2
The log-p-values for the collision test in t = 2 dimensions, with k = m cells, and sample size
n=2"y/m.
Generator | v =1 v=2 v=3 v=4 v=>5
LCG1 —2 —11 — —
LCG2 -3 -8 — —
LCG3 -3 — —
LCG4 2 4 — —
LCG5 -3 —13 — —
LCG6 -3 -7 — —
TABLE 6.3

The log-p-values for the two-level collision test (based on Cr) int = 2 dimensions, with k = 246
cells, sample size n = 2241V for each replication, and N = 32 replications.

Generator | v = —2 v=-—1 v=20
LCG7 -7 —
LCGS8 -7 —
LCG9 -3 -3

LCGS5), the Numerical Recipes [38], etc., and is suggested in several books and papers
(e.g., [3, 36, 40]). LCG® is used in the VAX/VMS operating system and on Convex
computers. LCG5 and LCGY9 are the rand and rand48 functions in the standard
libraries of the C programming language [37]. LCGT is taken from [6] and LCGS is
used in the CRAY system library. LCG1 to LCG4 have period length 23! — 2, LCG5,
LCG6, AND LCG9 have period length m, and LCG7 and LCGS8 have period length
m/4 = 246,

RLUX is the RANLUX generator implemented by James [12], with luxury level
L = 24. At this luxury level, RANLUX is equivalent to the subtract-with-borrow
generator with modulus b = 232 — 5 and lags r = 43 and s = 22 proposed in [31] and
used, for example, in MATHEMATICA (according to its documentation). WEYT is
a generator based on the nested Weyl sequence defined by u; = i2a mod 1, where
a = /2 (see [10]). WEY?2 implements the shuffled nested Weyl sequence proposed in
[10], defined by u; = ((Mi?a mod 1) 4+ 1/2)?a mod 1, with a = v/2 and M = 12345.
CLCG4, CMRGY96, and CMRGY99 are the combined LCG of [25], the combined MRG
given in Figure 1 of [18], and the combined MRG given in Figure 1 of [23].

Table 6.2 gives the log-p-values for the collision test in two dimensions, for LCG1
to LCG6, with k ~ m and n = 2”/m. As expected, suspect values start to appear
at sample size n ~ 4,/m and all these LCGs are definitely rejected with n &~ 16+/m.
LCG4 has too many collisions whereas the others have too few. By extrapolation,
LCG7 to LCGY are expected to start failing with n around 226, which is just a bit
more than what the memory size of our current computer allowed when we wrote this
paper. However, we applied the two-level collision test with N = 32, t = 2, k = 246,
and n = 2247V, Here, the total number of collisions C7 is approximately Poisson with
mean 32n?/(2k) ~ 64 - 4 under Hoy. The log-p-values are in Table 6.3. With a total
sample size of 32 - 224, LCG7 and LCGS fail decisively; they have too few collisions.
We also tried ¢t = 4, and the collision test with overlapping, and the results were
similar.

We tested the other RNGs (the last 5 in the table) for several values of ¢ ranging
from 2 to 25. RLUX passed all the tests for ¢ < 24 but failed spectacularly in 25
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dimensions. With d = 3, t = 25 (so k = 3%°), and n = 2%%, the log-p-value for
the collision test is £ = 8 (there are 239 collisions, while E[C|Hy] =~ 166). For a
two-level test with N = 32, d = 3, t = 25, n = 223, the total number of collisions
was Cp = 1859, much more than 32 E[C|Ho] ~ 1329 (¢ > 14). This result is not
surprising, because for this generator all the points V; in 25 dimensions or more lie
in a family of equidistant hyperplanes that are 1/v/3 apart (see [20, 42]). Note that
RANLUX with a larger value of L passes these tests, at least for ¢ < 25. WEY1
passed the tests in 2 dimensions, but failed spectacularly for all ¢ > 3: The points are
concentrated in a small number of boxes. For example, with t = 3, kK = 1000, and
a sample size as small as n = 1024, we observed C = 735 whereas E[C|Hy] =~ 383
(¢ > 14). WEY2, CLCG4, CMRG96, and CMRG99 passed all the tests that we tried.

7. Conclusion. We compared several variants of serial tests to detect regulari-
ties in RNGs. We found that the sparse tests perform better than the usual (dense)
ones in this context. The choice of the function f, j does not seem to matter much.
In particular, collisions count, Pearson, loglikelihood ratio, and other statistics from
the power divergence family perform approximately the same in the sparse case. The
overlapping tests require about the same sample size n as the non-overlapping ones
to reject a generator. They are more efficient in terms of the quantity of random
numbers that need to be generated.

It is not the purpose of this paper to recommend specific RNGs. For that, we
refer the reader to [22, 23, 27, 33], for example. However, our test results certainly
eliminate many contenders. All LCGs and LFSRs fail these simple serial tests as
soon as the sample size exceeds a few times the square root of their period length,
regardless of the choice of their parameters. Thus, when their period length is less
than 25 or so, which is the case for the LCGs still encountered in many popular
software products, they are easy to crack with these tests. These small generators
should no longer be used. Among the generators listed in Table 6.1, only the last four
pass the tests described in this paper, with the sample sizes that we have tried. All
others should certainly be discarded.
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