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In a static network reliability model one typically assumes that the failures of the components of the network are independent.
This simplifying assumption makes it possible to estimate the network reliability efficiently via specialized Monte Carlo
algorithms. Hence, a natural question to consider is whether this independence assumption can be relaxed, while still attaining
an elegant and tractable model that permits an efficient Monte Carlo algorithm for unreliability estimation. In this article
we provide one possible answer by considering a static network reliability model with dependent link failures, based on a
Marshall-Olkin copula, which models the dependence via shocks that take down subsets of components at exponential times,
and propose a collection of adapted versions of permutation Monte Carlo (PMC, a conditional Monte Carlo method), its
refinement called the turnip method, and generalized splitting (GS) methods, to estimate very small unreliabilities accurately
under this model. The PMC and turnip estimators have bounded relative error when the network topology is fixed while the
link failure probabilities converge to 0, whereas GS does not have this property. But when the size of the network (or the
number of shocks) increases, PMC and turnip eventually fail, whereas GS works nicely (empirically) for very large networks,
with over 5000 shocks in our examples.
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1. INTRODUCTION
Network reliability estimation problems occur in a wide range of situations and applications, in-
cluding telecommunications, transportation, energy supply, and many others [Barlow and Proschan
1975; Gertsbakh and Shpungin 2010]. In this paper, we focus on a classical static network reliability
problem in which a given set of nodes of the network is selected a priori, a random subset of the links
in the network fail, and we want to estimate the reliability of the network, defined as the probability
1− u that the selected nodes are all connected by operational links. For large networks, an exact
computation of the reliability 1−u, or equivalently of the unreliability u, is usually impractical and
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one has to rely on Monte Carlo techniques [Cancela et al. 2009; Gertsbakh and Shpungin 2010]. In
fact, computing u is known as a #P-complete computational problem [Colbourn 1987]. When the
network is highly reliable, u becomes a rare-event probability (it gets very small) and direct (crude)
Monte Carlo is also impractical. Various rare-event simulation methods have been developed to
address that problem. They include conditional Monte Carlo methods, importance sampling, use
of control variates, splitting techniques, and combinations of these; see Alexopoulos and Shultes
[2001], Botev et al. [2013b], Botev et al. [2013a], Cancela and El Khadiri [1995], Cancela and El
Khadiri [2003], Cancela et al. [2009], Cancela et al. [2014], Elperin et al. [1991], Gertsbakh and
Shpungin [2010], L’Ecuyer et al. [2011], Lomonosov and Shpungin [1999], Sahinoglu and Rice
[2010], Tuffin et al. [2014], and the references given there. All these methods were originally devel-
oped for the special case where the links fail independently of each other.

In this setting where links are independent, both theory and empirical experiments tell us that
for networks of moderate size and extremely small unreliability u, the approximate zero-variance
importance sampling scheme of L’Ecuyer et al. [2011] and the turnip method [Gertsbakh and Sh-
pungin 2010], which is a refinement of the permutation Monte Carlo (PMC) method of Elperin
et al. [1991] and Lomonosov and Shpungin [1999], are generally the best performers. In fact, these
methods have been proved to give estimators with bounded relative error (BRE), which means that
their standard deviation divided by the mean u remains bounded, when the link unreliabilities and u
converge to 0 while the network is fixed. But when the size of the network increases, these methods
eventually become inefficient (unless the network has special structure). They do not have BRE in
an asymptotic regime where the number of links increases to infinity while u remains of the same
order. For very large networks where the link unreliabilities are not so small but u is small because
the nodes are connected by a huge number of paths (high redundancy), the best method we know is
the generalized splitting (GS) algorithm of Botev et al. [2013a]. It does not have BRE when u→ 0,
but it works well for general networks having several thousand links and u < 10−15, for example.

The PMC, turnip, and GS methods all rely on a vector Y of continuous latent variables, which
represent the repair times of all the links; that is, we turn the static system into a dynamic one in
which we assume that each link is initially failed, gets repaired at some random time, and the set of
links that are repaired at time 1 are those that are considered operational in the static network. PMC
and turnip only look at the order in which the links are repaired (only the permutation, not the repair
times) and compute the probability that the network is failed at time 1, conditional on this order, as
an estimator of u. For very large networks, the important permutations, that contribute significantly
to the unreliability, often are sampled much too rarely, so we are again in a rare-event situation. To
address this problem, GS learns adaptively the regions where it is important to sample more, in the
space of values of Y. There is also a dual scheme in which one assumes that all links are initially
operational, and one uses a latent vector Y of exponential failure times instead of repair times; it
also works for PMC, turnip, and GS.

Botev et al. [2013b] use GS to construct a kernel density estimate that mimics the distribution
conditional on the rare event of network failure, and then use it as an importance sampling density.
Empirically, this method often performs better than GS. Botev et al. [2013a, Section 8] adapted
GS to a situation of dependent links for which the dependence is modeled via a normal or a t
copula, and used a hit-and-run re-sampler in the GS method. They were able to estimate very small
unreliabilities accurately for a (classical) dodecahedron network example with 20 nodes and 30
links. However, this approach becomes very time-consuming for large networks and these copulas
may not be always appropriate to model the dependence in real-life networks.

In this paper, we consider a different way of modeling the dependence, via the exponential
Marshall-Olkin (MO) copula [Marshall and Olkin 1967; Nelsen 2006]. In our context, this is equiv-
alent to assuming that components (links) can fail simultaneously in groups. This is a very natural
way of modeling the dependence, much more than a normal or t copula, as it may represent a situ-
ation where a subset of components fail together due to a common cause or by a cascading effect
[Iyer et al. 2009; Kalyoncu and Sankur 1992; Nelsen 2006]. In fact, this interpretation is already at
the basis of the definition of the MO copula. This being said, our goal is not to study the relevance of
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the MO copula for static reliability networks but to develop effective rare-event simulation methods
for this model.

With the MO model, a direct adaptation of PMC, turnip, and GS by using the vector of link repair
times as latent variables becomes too complicated and ineffective, because it involves complicated
conditional distributions. Our main contribution is to show how these methods can be adapted by
using different sets of latent variables Y, chosen in a way that the method remains very simple. We
develop corresponding algorithms and compare them numerically. These adaptations can handle
very small unreliabilities and large networks.

By definition, the exponential MO model is specified in terms of a vector Y of latent variables
that represent independent exponential shock times [Marshall and Olkin 1967]. Each shock takes
down simultaneously a given subset s of components (those in s that are already down remain so)
and occurs at an exponentially-distributed random time with rate λs. In one of their variants, the
PMC, turnip, and GS algorithms examined here use this Y as a vector of latent variables in a similar
way as for the independent case, except that link failure times are replaced by shock times. In the
dual version, link repairs cannot be replaced by repairs of groups of components; but we show how
they can be replaced by anti-shocks (shock removals) which also occur at exponential times with
appropriate rates. Initially, we assume that all the shocks have occurred, and we remove them one
by one when their corresponding anti-shocks occur. Removing a shock does not necessarily repair
(some of) the affected links, because other shocks may have also taken down these links. To find the
repair time of each link, we initialize a counter to the total number of shocks that affect this link, and
decrease the counter by one each time one of these shocks is removed. The link is repaired when
the counter reaches 0. These constructions provide elegant and efficient algorithms.

Although the problem and the algorithms are defined in this paper in terms of the connectivity
of a subset of nodes in a network, everything generalizes easily to a multicomponent system where
each component has a binary state (operating or failed), and the binary system state is a monotone
increasing function of the component states, called the structure function [Barlow and Proschan
1975]. In the algorithms, “network” is replaced by “system” and the links are replaced by the system
components. A key requirement for the implementation is to be able to quickly find if there is a
change in the value of the structure function when one or more binary states are changed (when a
shock is added or removed).

For the network connectivity problem studied in this paper, we maintain graph data structures to
represent the state of the network and anticipate efficiently what happens to the structure function
value when a link is added or removed. As an example of a generalization that could be handled,
one may consider that the links in the network have a length and that each pair of selected nodes
must be connected by a path of length no larger than a given number. Another example is if the links
have a capacity, and the structure function indicates if the maximum flow that we can send from a
source to a destination (two given nodes) reaches a given threshold. A further generalization would
be to consider systems with multistate (instead of just binary) components [Natvig 2011].

The rest of the paper is organized as follows. In Section 2, we define the model and problem, and
explain how the MO copula introduces dependence via latent variables that represent shock times.
We state a relationship between the failure rates in the MO model and the reliabilities of subsets
of components. In Section 3, we adapt the PMC algorithm to our setting. We consider different
variants, one where we generate and sort all shock times, one where we only generate the (partial)
permutation directly, one where we scan the shocks in reverse order to reconstruct the network,
and one where we generate anti-shocks instead of shocks. We examine numerical issues that occur
when computing the conditional expectation for PMC, and we provide a very effective formula for
the special case where the shock rates are all equal. In Section 4, we show how to adapt the turnip
method to our case. Again, we give different variants, with shocks and with anti-shocks, and we
summarize the different PMC and turnip variants and their combinations. In Section 5, we give
sufficient conditions under which the PMC and turnip estimators can be proved to have BRE, and
also necessary conditions, both in the context where u→ 0 for a fixed network. Interestingly, the
conditions are weaker with anti-shocks than with shocks. In Section 6, we adapt the GS method to
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our setting, both with shocks and with anti-shocks. In Section 7, we discuss some data structures
used for an efficient implementation of these algorithms. Such techniques are required when the
graph gets large. In Section 8, we summarize our numerical experiments with various examples.
This is followed by a conclusion in Section 9. The two conference papers of Botev et al. [2012] and
Botev et al. [2014] gave a preliminary sketch of some of the ideas developed here.

2. PROBLEM FORMULATION AND MO COPULA MODEL
We consider a graph with set of nodes V and a set of m links that connect m distinct pairs of
nodes. Associated with each link i is a Bernoulli random variable Xi denoting whether the link is
operational (Xi = 1) or failed (Xi = 0), with P(Xi = 0) = ui, the unreliability of link i, for i= 1, . . . ,m.
The random vector X=(X1, . . . ,Xm) represents the configuration (or state) of the network. Typically,
the coordinates of X are assumed to be independent, but here we relax this assumption. A subset of
nodes V0 ⊂ V is selected a priori and the network is said to be operational if all nodes in V0 are
connected to each other by at least one tree of operational links. We define the structure function
Φ of the graph by Φ(x) = 1 when the network is operational in configuration x, and Φ(x) = 0
otherwise. The unreliability u of the network is the probability that it is not operational:

u = P(Φ(X) = 0).

The static network reliability problem consists in estimating u.
The most general way of modeling the distribution of X for a static network is to assign a proba-

bility p(x)≥ 0 to each of the 2m configurations x ∈ {0,1}m of the system, so that these probabilities
sum to 1. In this paper, the multivariate Bernoulli distribution of X is defined by an MO copula
model which can be almost as general, as we shall see below (it can also have 2m degrees of free-
dom). The MO copula is defined in terms of a vector Y of independent exponential latent variables
that represent shock times. For any subset s of components (or links), a shock that provokes the joint
failure of all components of s occurs at an exponential time with rate λs. Let L = {s : λs > 0} and
κ = |L |. We will index the elements of L by j and number them from 1 to κ . For practical imple-
mentations, we shall assume that κ is not too large, so that we can easily store and visit all elements
of L . We denote the jth subset by s( j), its corresponding shock rate by λ j = λs( j), and the random
exponential shock time by Yj. The vector Y = (Y1, . . . ,Yκ) is the latent state of the system. Com-
ponent i fails at time Ỹi = min{Yj : i ∈ s( j)}, which is an exponential with rate λ̃i = ∑{ j:i∈s( j)}λ j.
We denote its state at any time γ ≥ 0 by Xi(γ) = I[Ỹi > γ], and let X(γ) = (X1(γ), . . . ,Xm(γ)). If this
i belongs to no set s, then λ̃i = 0 and Ỹi = ∞. This means that link i cannot fail, in which case we
can remove this link and merge the two nodes. Thus, there is no loss of generality in assuming that
λ̃i > 0 for all i, and we do so for the rest of the paper. The time at which the network fails is

S̃(Y) = inf{γ ≥ 0 : Φ(X(γ)) = 0}.

By definition, the MO copula is the multivariate distribution of U = (U1, . . . ,Um), where Ui = 1−
exp[−λ̃iỸi] is uniform over (0,1) for each i.

We put Xi = Xi(1) and X = X(1), so that the operational links in the static network are those that
are still alive at time 1, and the static network is operational if and only if S̃(Y)> 1. In this model,
P[Xi(γ) = 1] = P[Ỹi > γ] = P[Ui > 1− exp[−λ̃iγ]] = exp[−λ̃iγ], and if we want the reliability of
component i to be P[Xi = 1] = ri= 1−ui, we must have λ̃i = − lnri. But these ri or λ̃i are not
sufficient to specify the model, because they do not specify the dependence.

We can write a system of linear relationships between the survival probabilities of subsets r of
components and the nonzero rates λs. For each subset r, let qr be the probability that all components
in r are up in the network (i.e., survive up to time 1). Then we have

gr
def
= − lnqr = ∑

s
δs,rλs for all r,

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



Network Reliability with MO Copula A:5

where δs,r = I[s∩ r 6= /0]. If we know (or decide to specify) the qr’s (or equivalently the gr’s), in
principle we can compute the corresponding rates λs by solving this system of 2m equations in 2m

unknown. An explicit formula for the solution is given in Lemma 4.1 of Sun et al. [2014]:

λs = ∑
r⊆s

(−1)|s|−|r|+1gr̄, (1)

where r̄ is the complement of r. If all the rates λs given by this formula are non-negative, then they
provide an MO representation that corresponds to the given probabilities qr. Conversely, if such a
representation exists, then the λs must satisfy (1) and be non-negative.

We give the above relationships for completeness, but they do not have to be used to select the
λs. Moreover, when m is large, solving the full linear system (1) is impractical, because its size
increases exponentially in m. One must then restrict a priori the set of nonzero λs, and estimate them
in some way (e.g., via least squares). Another approach could be to let many λs’s be nonzero, but to
parameterize them with a small number of parameters, and estimate the parameters. Our algorithms
in this paper are designed for the former case, where the number of nonzero λs’s is limited.

For any given pair of links (i,k), let λ̃i,k = ∑{ j:i,k∈s( j)}λ j, the total rate of shocks that affect
both i and k simultaneously. We have Cov[Xi,Xk] = P[Xi = Xk = 1]−P[Xi = 1]P[Xk = 1] = P[Ỹi >

1, Ỹk > 1]−P[Ỹi > 1]P[Ỹk > 1] = exp[−λ̃i− λ̃k + λ̃i,k]− exp[−λ̃i− λ̃k]≥ 0. That is, the MO copula
cannot give negative covariances between the Xi’s. For example, a two-component system where
each component is down with positive probability, but the two cannot be down at the same time
cannot be modeled by the MO copula, because the covariance is negative. This type of constraint
applies more generally. For any subset s of components, and any partition of s, the probability that
all components in s are down must be at least as large as the product of the failure probabilities over
the subsets that form the partition. Most real-life systems should satisfy this condition. Negative
dependence between failures is rarely realistic. In this sense, the MO copula permits one to specify
a very general and flexible class of distributions for X.

One good feature of the MO model is that it can cover cascading failures. For example, suppose
that the subset s1 of components fail together at rate λ1 and that such a failure also triggers im-
mediate failure of subset s2 with probability p. We can model this simply by assigning failure rate
(1− p)λ1 to subset s1 and pλ1 to subset s1∪ s2. This generalizes easily to more general cascading.

The crude Monte Carlo method estimates the unreliability u = P[S̃(Y)≤ 1] as follows. Generate
Y, sort its coordinates by increasing order, and remove in this order the components (links) affected
by these shocks until the network fails. The time of the last considered shock, at which the network
fails, is S̃(Y). Repeat this n times, independently, and estimate u by the average of the n replicates
of I[S̃(Y) < 1]. It is well-known that when u is very small, this performs very poorly because the
indicator is nonzero extremely rarely [Asmussen and Glynn 2007; Rubino and Tuffin 2009]. In what
follows, we propose viable alternative methods that perform much better for small u.

3. ADAPTING PMC TO THE MO MODEL
3.1. PMC with shocks
To apply the PMC method with the MO model, we can generate the vector Y of shock times Yj,
sort them by increasing order to get the order statistics Y(1), . . . ,Y(κ), and retain only the order in
which the shocks occur, i.e., the permutation π = (π(1), . . . ,π(κ)) such that Y( j) = Yπ( j) for each j.
In Section 3.3, we show how the permutation can be generated without first generating the shock
times, although this is not always faster. Conditional on this permutation π , we then compute nu-
merically the probability that the graph is failed at time 1. This is the PMC estimator. To compute
this probability, we can add the shocks j one by one in their order of occurrence and remove the
links i ∈ s( j) affected by these shocks, until the network fails. The number of shocks required to put
the system down is a random variable Cs called the critical shock number.

At step k of this procedure, before adding the kth shock π(k), we know that the time Ak =
Yπ(k)−Yπ(k−1) until this next shock occurs is an exponential with rate Λk equal to the sum of rates of
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all the shocks that did not occur yet. These Λk obey Λ1 = λ1 + · · ·+λκ , and Λ j+1 = Λ j−λπ( j)< Λ j
for j ≥ 1. Conditional on π and on Cs = c, the failure time is A1 + · · ·+Ac, a sum of c independent
exponential random variables with rates Λ1 > Λ2 > · · ·> Λc. This sum has an hypoexponential dis-
tribution, whose cumulative distribution function (cdf) P [A1 + · · ·+Ac ≤ γ | π], which is the PMC
estimator of u based on one simulation run, can be written as a matrix exponential and can be
computed as we explain below (see also Botev et al. [2013a]).

This PMC procedure is stated in Algorithm 1. In this algorithm (and all others stated in this
paper), indentation delimits the scope of the if, else, and for statements. This algorithm computes
an unbiased estimator U of the unreliability u and returns its value. It will be invoked n times,
independently, to obtain n realizations U1, . . . ,Un of U , and one can estimate u by the average Ūn =
(U1+ · · ·+Un)/n and the variance σ2 =Var[U ] by the empirical variance S2

n =∑
n
i=1(Ui−Ūn)

2/(n−
1). This can be used to compute a confidence interval on u.

ALGORITHM 1: : A PMC algorithm with shocks
Λ1← λ1 + · · ·+λκ

x = (x1, . . . ,xm)← (1, . . . ,1) // all links are operational
k← 1
draw the κ shock times and sort them in increasing order to obtain the permutation π = (π(1), . . . ,π(κ))
while the nodes in V0 are all connected do

j← π(k)
for all i ∈ s( j) do

if xi = 1 then
xi← 0, remove link i from graph

k← k+1
Λk← Λk−1−λ j

Cs← k−1 // shock number at which V0 is disconnected
return U ← P [A1 + · · ·+ACs ≤ 1 | π], an unbiased estimate of u computed using Cs,Λ1, . . . ,ΛCs .

3.2. Computing the hypoexponential cdf
The hypoexponential complementary cdf can be written explicitly as

P [A1 + · · ·+Ac > γ|π] =
c

∑
j=1

e−Λ jγ p j (2)

where

p j =
c

∏
k=1,k 6= j

Λk

Λk−Λ j
,

and (2) can be computed in O(c2) time; see Ross [2007, page 299] and Gertsbakh and Shpungin
[2010, Appendix B]. (We know that Λk < Λ j for k > j by construction.) However, Formula (2) is
numerically unstable when c is large or if the shock rates λ j’s are too small. What goes wrong is that
the products p j in (2) are very large and of comparable sizes, and have alternating signs (−1) j−1.
When the λ j are small, the Λ j and the exponential factors that multiply those products are close
to each other and near 1, so we have a sum of very large alternating terms while the sum itself is
between 0 and 1; a situation that leads to a loss of precision and numerical errors. Note that the sizes
of the products p j themselves do not depend on the sizes of the λ j’s. For example, if we multiply
all λ j’s by the same constant, this multiplies the Λ j’s by the same constant and changes nothing in
the products p j.

The hypoexponential complementary cdf (2) can in fact be written as a matrix exponential (see
Botev et al. [2013a]) and a more stable and accurate algorithm to compute this matrix exponential is
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given in Higham [2009]. However, that algorithm involves multiplication of c× c matrices, which
has O(c3) time complexity in our implementation, so it is much slower and becomes impractical
when c is too large. As an illustration, with our implementation, in one example, the matrix ex-
ponential algorithm was about 15 times slower than using (2) for c = 10 and about 825,000 times
slower for c = 1000.

Another numerical problem comes from the fact that (2) actually gives 1−U in Algorithm 1.
When U is very small (which is typical), the representation error on 1−U in double precision
arithmetic (with 52-bit mantissa) is around 10−15, which means that we have limited accuracy on
U . In fact, we have (roughly) no accuracy at all on the returned U when U < 10−15. To derive a
more direct formula for U , note that

c

∑
j=1

p j = P [A1 + · · ·+Ac > 0|π] = 1,

so we can rewrite

P [A1 + · · ·+Ac ≤ γ| π] = 1−
c

∑
j=1

e−Λ jγ p j =
c

∑
j=1

(1− e−Λ jγ)p j (3)

which permits one to compute U directly, by using predefined functions that can compute 1−e−Λ jγ

accurately. For example, when Λ jγ is very small, e−Λ jγ is very close to 1, so if we do the subtraction
from 1 explicitly we may lose all accuracy, but one can write 1−e−Λ jγ ≈Λ jγ−(Λ jγ)

2/2+ · · · , and
this series converges very fast (so it permits one a very accurate evaluation) when Λ jγ is very small.
When c gets too large, however, (3) also becomes unstable in the same way as (2). Our GS method
does not have this type of limitation.

3.3. Generating the permutation directly
The permutation π can also be generated directly, without generating and sorting the shock times
Yj, and only for the first Cs shocks, as follows. At step k ≥ 1, the kth shock is selected among the
shocks still in consideration, with probability λ j/Λk for shock j. This avoids the sorting, which
takes O(κ logκ) time.

However, unless the λ j’s are all equal (we will come back to this special case in Section 3.6),
updating the probabilities λ j/Λk and selecting the next shock according to those probabilities at
each step involves overhead when these probabilities are different. Computing and updating all
these probabilities in general would take O(κ) time at each step, and therefore O(Csκ) time overall,
which could be much slower than generating and sorting the shock times. To avoid recomputing the
probabilities at each step, a different approach to generate the permutations is to compute a table
of the probabilities λ j/Λk and the corresponding cdf before doing the n simulation runs, and re-use
this same table at all steps and for all runs to generate the sequence of shocks. When a shock occurs,
we mark it in the table as already selected, and if it is selected again later we just skip it and generate
another one, as in an acceptance-rejection method. After each run, we remove all the marks to reset
the table for the next run. This works fine and is typically more efficient that generating and sorting
all shock times when Cs/κ � 1. But it can become very slow when κ is large and Cs/κ is near
1, because of the high rejection probabilities when k gets large. The PMC procedure with direct
generation of π is stated in Algorithm 2. In our experiments, Algorithm 2 was typically around 10%
to 30% faster than Algorithm 1. Nevertheless, for the empirical results reported here with the other
PMC and turnip methods that follow, we simply generated and sorted the shocks.

3.4. Scanning the shocks in reverse order
To compute Cs given the (full) permutation π , instead of adding shocks until the system fails, one
can assume that all the shocks have already occurred, and remove them one by one in their reverse
order of occurrence, until the system is repaired. If there are ci shocks with positive rates that can
affect component i, then component i will be repaired when those ci shocks have been removed. We

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 Z. Botev, P. L’Ecuyer, R. Simard, and B. Tuffin

ALGORITHM 2: : PMC algorithm without generating the shock times
Λ1← λ1 + · · ·+λκ

L1←{1, . . . ,κ} // shocks still under consideration
x = (x1, . . . ,xm)← (1, . . . ,1) // all links are operational
k← 1
while the nodes in V0 are all connected do

draw J from L1, with P[J = j] = λ j/Λk
π(k)← J
for all i ∈ s( j) do

if xi = 1 then
xi← 0, remove link i from graph

k← k+1
Λk← Λk−1−λJ and remove J from L1

Cs← k−1
return U ← P [A1 + · · ·+ACs ≤ 1 | π], an unbiased estimate of u computed using Cs,Λ1, . . . ,ΛCs .

assume that ci > 0 for each i. In the implementation, for each component i, we maintain a counter
di that starts at ci and decreases by 1 each time a shock that affects component i is removed. That
is, when a shock j is removed, for all components i ∈ s( j), we subtract 1 from di. Whenever di
becomes 0, link i gets repaired, so we add it to the current configuration and if it connects two
different connected components of the network (that are not already connected), we merge those
two connected components, exactly as in Botev et al. [2013a]. As soon as the system becomes
operational, we know the critical shock number Cs defined in Section 3, and we can compute the
same unreliability estimator as in Algorithm 1, based on the first Cs shocks. This Cs is the number of
the last shock that had been removed before the system became operational. This gives Algorithm 3.
Note that to implement this, we need to generate all the shocks. The difference between Algorithms
1 and 3 is that the latter reconstructs the network by removing the shocks one by one, whereas the
former destroys the networks by adding the shocks one by one. Both work on the same ordered
list of shocks and yield exactly the same estimator. Only the computing time differs. Generally
speaking, adding the shocks in their order of occurrence is faster when Cs is much smaller than
κ −Cs, otherwise starting with all the shocks and removing them one by one (adding anti-shocks)
is usually faster, because updating the data structures that represent the graph is faster when adding
links than when removing links.

3.5. PMC with anti-shocks generated directly
It is also possible to define independent exponential anti-shock times, and use them to define a
different PMC estimator, based on a sum of anti-shock times. We start in a state where all the
shocks have occurred. Each anti-shock removes the corresponding shock. This gives the correct
probability for the shock to have occurred after time 1. Suppose that anti-shock j occurs at time R j,
an exponential of rate µ j. To have the correct probability e−λ j that shock j occurs after time 1, it
suffices to select µ j so that the anti-shock occurs before time 1 with exactly that probability. That
is, we want 1− e−µ j = P[R j ≤ 1] = P[Yj > 1] = e−λ j , and therefore

µ j =− ln(1− e−λ j).

We can generate the anti-shocks times R j as exponential with those rates µ j and sort them in in-
creasing order. This sorting corresponds to a permutation π ′ = (π ′(1), . . . ,π ′(κ)) as for the shocks.
This π ′ has actually the same distribution as the reverse of the permutation π for the shocks. Now,
we add the anti-shocks in this order until all nodes in V0 are connected, say when the Cath anti-shock
occurs. Before adding the kth anti-shock π ′(k), the time A′k = Rπ ′(k)−Rπ ′(k−1) until this anti-shock
occurs is exponential with rate Λ′k defined recursively via Λ′1 = µ1+ · · ·+µκ and Λ′j+1 = Λ′j−µπ ′( j)
for j ≥ 1. Conditional on π ′ and on Ca = c, the failure time is A′1 + · · ·+A′c, a sum of c independent
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ALGORITHM 3: : A reverse PMC algorithm
draw the κ shock times and sort them in increasing order
L1←{π(1), . . . ,π(κ)}

// list of shocks, by increasing order of occurrence
for i = 1 to m do

di← ci and xi← 0 // configuration of links
k← κ

while the nodes in V0 are not all connected do
j← π(k)
for all i ∈ s( j) do

di← di−1
if di = 0 then

xi← 1, and if link i joints two connected components, merge them
k← k−1

Cs← k+1 // shock number at which V0 is disconnected
Λ1← λ1 + · · ·+λκ

for k = 1 to Cs−1 do
Λk+1← Λk−λπ(k)

return U ← P [A1 + · · ·+ACs ≤ 1 | π], estimator of u.

exponential random variables with rates Λ′1, . . . ,Λ
′
c. Finally, we have the unbiased unreliability esti-

mator U ′ = P[A′1 + · · ·+A′Ca
> 1 | π ′], which can be computed as explained earlier, but with the Λ j

replaced by Λ′j in the formulas and in the definition of p j.
If the permutation π for the shocks has critical shock number Cs, π ′ is the reverse permutation

and it has critical anti-shock number Ca, then Cs +Ca = κ + 1. This means that we can generate
either π or π ′ and compute at the same time either Cs or Ca from one of these permutations, by
adding shocks or by adding anti-shocks, and then use either U = P[A1 + · · ·+ACs ≤ 1 | π] or U ′ =
P[A′1 + · · ·+A′Ca

> 1 | π ′] as an estimator. One advantage of the latter when u is small is that it
is expressed directly in terms of the tail probability given in (2), which is often much more stable
than (3), used in Algorithm 1, when u is very small. Algorithm 4 gives one version of this, with
generation and sorting of anti-shock times, and U ′ as an estimator.

ALGORITHM 4: : A PMC algorithm with exponential anti-shocks

Λ′1← µ1 + · · ·+µκ

for i = 1 to m do
di← ci and xi← 0 // configuration of links

draw the κ anti-shock times R j and sort them in increasing order to obtain the permutation
π ′ = (π ′(1), . . . ,π ′(κ))
k← 1
while the nodes in V0 are not all connected do

j← π ′(k)
for all i ∈ s( j) do

di← di−1
if di = 0 then

xi← 1, and if link i joints two connected components, merge them
Λ′k+1← Λ′k−µπ ′(k)
k← k+1

Ca← k−1 // anti-shock at which V0 is connected
return U ′← P

[
A′1 + · · ·+A′Ca

> 1 | π ′
]
.
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3.6. When the λ j’s are all equal
In the special case where all the shock rates λ j are equal, faster PMC implementations are available.
When generating the permutation π directly, at each step the next shock must be drawn uniformly
among the shocks that did not occur yet. Thus, generating the sequence of shocks up to the critical
one amounts to generating the first Cs elements of a random permutation of {1, . . . ,κ} objects.
This can be done very efficiently [Knuth 1998, Section 3.4.2]: Put the numbers 1, . . . ,κ in a table
of size κ , then at each step k, draw J in {k, . . . ,κ} at random, and exchange the table entries in
positions J and k. The number at position k is the shock selected at step k. There is no need to
update probabilities or to use rejection.

Moreover, when all λ j are equal, say to λ , in the case of PMC with shocks, we have Λ j =
λ × (κ +1− j). In this case, one can rewrite (3) as

P [A1 + · · ·+Ac ≤ γ|π] =
c

∑
j=1

(1− e−(κ+1− j)λγ)
c

∏
k=1,k 6= j

κ +1− k
j− k

= κ

(
κ−1
c−1

)∫ 1

e−λγ

tκ−c(1− t)c−1dt (4)

= 1− Ie−λγ (κ− c+1,c), (5)

where the equality in (4) is a direct consequence of Formula (6.6.4) in Abramowitz and Stegun
[1970] and the last expression contains the cdf of the beta distribution (or regularized incomplete
beta function), defined by

Ix(α,β ) =
1

B(α,β )

∫ x

0
tα−1(1− t)β−1dt

for α,β > 0 and x ∈ [0,1], where B(α,β ) is the beta function. The equality (4) can also be verified
directly by expanding the (1− t)c−1 in the integrand using the Binomial Theorem to get a polyno-
mial in powers of t, and integrating those powers of t from e−λ to 1 to obtain the expression on the
previous line. To evaluate (5) accurately when e−λγ is close to 1, one can use the identity

1− Ie−λγ (κ− c+1,c) = I1−e−λγ (c,κ− c+1).

For PMC with anti-shocks, still with all shock rates equal to λ , we can use a similar reformulation
of (2) with λ replaced by µ =− ln(1− e−λ ). This gives

P
[
A′1 + · · ·+A′c > γ|π

]
=

c

∑
j=1

e−(κ+1− j)µγ
c

∏
k=1,k 6= j

κ +1− k
j− k

= Ie−µγ (κ− c+1,c). (6)

Formulas (5) and (6) do not apply for the turnip method defined in the next section, but only for
PMC. Aside from being faster to compute, they have two additional advantages: (i) for PMC, where
the direct formula (2) suffers from numerical instabilities, (5) can be used directly instead of the
slow matrix exponential, and (ii) these formulas can compute cdf values much smaller than 10−16,
because they do not rely on the subtraction F(x) = 1− F̄(x). They only require an accurate compu-
tation of the beta cdf.

Because of this important speedup, it could be worthwhile to construct the model in the first
place under the constraint that all shock rates must be equal. To make some of the shocks much
more probable than others, one can simply duplicate them. That is, we may have ns ≥ 0 different
shocks that affect the same subset s, all with rate λ . This is equivalent to having λs = nsλ . This puts
restrictions on the shock rates, as they must now be all integer multiple of the same constant λ , but
on the other hand, this may allow a much faster estimation of u.
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4. ADAPTING THE TURNIP METHOD
The idea of the turnip method [Gertsbakh and Shpungin 2010], adapted to our setting, is as follows:
While we add the shocks [or anti-shocks] one by one in increasing order of their occurrence, we
remove from consideration at each step all the shocks [or anti-shocks] that did not yet occur and can
no longer contribute to system failure [or repair].

4.1. Turnip with shocks
When shocks are added, any shock that takes down only links that are already failed can be removed
from consideration. Also, if a shock takes down some links that are not yet failed, but none of these
links belongs to a path that connects two nodes of V0 in the current configuration of the network,
then this shock can be removed from consideration. Removing these useless shocks may speed up
things considerably in some situations, as was observed in Gertsbakh and Shpungin [2010] and
Botev et al. [2013a] for the case of independent links, but it also entails additional overhead for the
maintenance of data structures and for the computations to identify the shocks that can be removed
from further consideration. This overhead can be more important in the MO model with shocks than
with independent links.

Note that when we add the shocks until the system fails, all nodes in V0 are connected, and
therefore belong to the same connected component of the graph. Then, any link that connects two
nodes that are not in this connected component can be removed from consideration, because it can
no longer connect nodes in V0. We can actually put those links to the failed state right away, and
keep only the links that connect nodes that are in the same connected component as V0. In this way,
there will always be a single connected component under consideration, until the network fails.
Whenever a shock takes down only links that are already failed, we remove it from consideration.
This is our adaptation of the turnip using shocks, for this MO case. It is given in Algorithm 5, in a
version where the permutation is generated directly. One can also generate the shock times and sort
them to generate the permutation.

ALGORITHM 5: : An adapted turnip algorithm
Λ1← λ1 + · · ·+λκ

L1←{1, . . . ,κ} // shocks still under consideration
x = (x1, . . . ,xm)← (1, . . . ,1) // all links are operational
k← 1
while the nodes in V0 are all connected do

draw J from L1, with P[J = j] = λ j/Λk
π(k)← J
for all i ∈ s( j) do

xi← 0, remove link i, update the connected components if needed, and if the two nodes that
were connected by i are no longer in the same connected component, remove all the links in the
component which is no longer connected with V0

k← k+1
Λk← Λk−1−λJ and remove J from L1

// the following step distinguishes turnip and PMC
for all shock j ∈L1 that affects only failed links do

Λk← Λk−λ j and remove j from L1 // shock j is discarded and k is unchanged
Cs← k−1
return U ← P [A1 + · · ·+ACs ≤ 1 | π], an unbiased estimate of u computed using Cs,Λ1, . . . ,ΛCs .

Removing the useless shocks here can improve things in two ways: it can reduce the work if we
save more by handling fewer shocks than the additional overhead, and it can reduce the variance
of the estimator. Indeed, when shocks are removed from consideration at the last step of the while
loop, k is not increased, so these discarded shocks are not considered when computing the estimator
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U . Therefore, the Cs returned by Algorithm 5 can be much smaller than the one returned by PMC,
and the resulting estimator is not the same and can have much smaller variance. In our experiments,
we often observed a variance reduction but an increase in work (because of the important overhead).

4.2. Turnip with anti-shocks
In the case where we assume that all the shocks have occurred and we add anti-shocks until the
system is repaired, we can also remove the anti-shocks that can no longer contribute. This is done
in Algorithm 6, which returns an estimator U ′ based on the Ca non-discarded anti-shocks. In this
version, all the anti-shock times are first generated and sorted in increasing order. The ordered
list of anti-shocks L1 can be maintained in an array and the removed entries just marked instead
of physically removed. When scanning this ordered list at the end of the algorithm, we scan the
unmarked entries in the array. Links are eliminated from the network when we find that they can
no longer connect anything new, and future anti-shocks that can only take down failed links are
discarded. The counter k counts the number of non-discarded anti-shocks that have occurred, while
k′ also includes those that were discarded. The estimator U ′ is based on the times R j between the
non-discarded anti-shocks.

4.3. Summary of PMC and turnip versions
We summarize the different versions of PMC and turnip that we have introduced. They distinguish
themselves by four main binary decisions in the definition of the algorithm.

(a) We can generate all shock or anti-shock times, then sort them in increasing order to determine
the permutation, or we can generate the permutation directly without generating the shock times.

(b) To determine the critical shock or anti-shock number Cs or Ca, we can use a destruction process
that adds the shocks one by one, or use a construction process that removes the shocks one by
one (reverse process).

(c) We can compute the critical numbers by considering all shocks or anti-shocks (this is PMC) or
eliminate along the way those that are found to be useless (this is the turnip).

(d) The estimator can be defined as a conditional probability for a sum of Cs exponential times
between shocks, or a sum of Ca exponential times between anti-shocks (denoted by “anti”).

Note that when using the reverse process in (b), we need to generate the entire permutation. Overall,
there are 16 possible combinations. This gives 16 different variants of the algorithm. Algorithms 1
to 6 are only six examples out of those 16. Which combination is best is problem-dependent. For
(a), in our experiments, generating the permutation directly was always a bit faster, but this may not
always be true, in particular when the critical number is close to κ . For (b), the destruction process
(adding shocks) is usually faster when Cs�Ca, and removing shocks is faster when Cs�Ca. For
(c), we generally expect turnip to be faster, but it depends on the overhead required to maintain
the appropriate data structures to identify the useless shocks or anti-shocks. What is best in (d) is
similar to (b): roughly, adding the shocks is generally better (smaller variance) when Cs < Ca, and
vice-versa. However, when u is very small, the formula that computes an estimator U ′ of u directly
as the complementary cdf of the sum of Ca anti-shocks times, as in Algorithm 4, is sometimes the
only one that is numerically stable and usable as an estimator, as even (3) becomes unstable. Our
numerical examples will illustrate all of this.

5. BOUNDED RELATIVE ERROR FOR PMC AND TURNIP
We now derive conditions under which the PMC and turnip methods provide estimators having
BRE when u→ 0. For this, we parameterize all the rates λ j by a single rarity parameter ε > 0, so
that λ j = λ j(ε) is non-increasing in ε and the corresponding u = u(ε)→ 0 when ε → 0, and we
study the behavior when ε → 0. Recall that for two non-negative functions f and g, we say that
f (ε) = O(g(ε)) if there is a constant K such that f (ε)≤ Kg(ε) for all ε > 0, and f (ε) = Θ(g(ε))
when both f (ε) = O(g(ε)) and g(ε) = O( f (ε)).
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ALGORITHM 6: : A turnip algorithm with anti-shocks generated at exponential times

Λ′1← µ1 + · · ·+µκ

draw the κ anti-shock times, with rates µ j, and sort them in increasing order
L1←{π(1), . . . ,π(κ)} // list of anti-shocks in increasing order of occurrence, all unmarked
F ←{1, . . . ,m} // set of failed links
for i = 1 to m do

di← ci and xi← 0 // current configuration of links
k← 1 and k′← 1
F0← /0 // a list of links that can be discarded
while the nodes in V0 are not all connected do

for each i′ ∈F0 do
for each unmarked j′ ∈L1 that contain i′ do

if shock j′ affects no link in F then
// shock j′ can be discarded

mark j′ in L1
Λ′k← Λ′k−µ j′

while π(k′) is marked do
k′← k′+1

j← π(k′) and mark j
// in what follows, we remove shock j

Λ′k+1← Λ′k−µ j
F0← /0 // a local list of links that become operational or can be discarded after anti-shock j
for all i ∈ s( j) do

di← di−1
if di = 0 then

xi← 1, remove i from F , and add i to F0 // link i gets repaired
if link i joints two connected components, merge them, remove from F all the links
i′ ∈F that connect these two previous components, and add them to F0

k← k+1 and k′← k′+1
Ca← k−1 // critical anti-shock number
return U ′← P

[
A′1 + · · ·+A′Ca

> 1 | π
]
.

We start with the PCM method with shocks. The estimator

U = Z(π) def
= P[A1 + · · ·+ACs ≤ 1 | π] (7)

(for a single realization) is a function of the (random) permutation π . If p(π) denotes the probability
of π , then

u = u(ε) = E[Z(π)] = ∑
π

Z(π)p(π) (8)

and

RE2[Z(π)] =
E[Z2(π)]−u2

u2 =
1
u2 ∑

π

Z2(π)p(π)−1. (9)

Here, both Z(π) and p(π) are functions of ε , although we omit to write it explicitly to simplify the
notation. Also, we only need to consider the partial permutations π̃ = (π(1), . . . ,π(Cs)) rather than
the full permutations π = (π(1), . . . ,π(κ)), in the sense that all the full permutations that yield the
same π̃ can be considered as the same π in the sums (7), (9), and elsewhere, and these sums can be
defined over π̃ instead of π . This means that in our development below, π could be replaced by π̃ ,
and similarly with π ′ for the anti-shocks.

We have BRE if and only if RE2[Z(π)] =O(1), which occurs if and only if Z2(π)p(π)/u2 =O(1)
for all π , because the total number of permutations π is finite. This holds for both PMC and turnip.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Z. Botev, P. L’Ecuyer, R. Simard, and B. Tuffin

THEOREM 5.1. If p(π) = Θ(1) for all π , i.e., if each p(π) remains bounded away from 0 when
ε → 0, then the PMC and turnip estimators with shocks have BRE.

PROOF. For all π , we know that Z(π)p(π) ≤ u, so if p(π) = Θ(1), then Z2(π)p(π)/u2 =
O(Z2(π)p2(π)/u2)≤ 1.

COROLLARY 5.2. If λ j/λk = Θ(1) for all j 6= k, then PMC and turnip with shocks give BRE.

PROOF. Under the given assumption, we have λ j/Λk = Θ(1) for all j and k in Algorithm 2,
which implies that p(π) = Θ(1) for all π .

The conditions in Theorem 5.1 are only sufficient. We now give necessary and sufficient condi-
tions in the setting where the λ j’s are polynomial functions of ε , say λ j = Θ(εa j) for some a j > 0,
for each link j. In that case, it is easily seen that for any given π , p(π) and Z(π) are also poly-
nomial in ε , which means that for each π , there exist real numbers m1(π) ≥ 0 and m2(π) ≥ 0
such that p(π) = Θ(εm1(π)) and Z(π) = Θ(εm2(π)). There is also an r ≥ 0 such that u = Θ(εr) and
r = minπ(m1(π)+m2(π)). In this setting, Z2(π)p(π)/u2 = εm1(π)+2m2(π)−2r = O(1) if and only if
m1(π)+2m2(π)≥ 2r. Hence, we have proved:

THEOREM 5.3. If for each π we have p(π) = Θ(εm1(π)) and Z(π) = Θ(εm2(π)), then the PMC
and turnip estimators with shocks have BRE if and only if m1(π)+2m2(π)≥ 2r for all π .

Note that m1(π)+m2(π) ≥ r always hold, so if m1(π) = 0 then m2(π) ≥ r and the condition of
the theorem is satisfied. When this holds for all π , this is the situation of Theorem 5.1. If m1(π)+
m2(π) = r, so the contribution of π to u does not vanish asymptotically when ε→ 0, then m1(π) = 0
(i.e., p(π) = Θ(1)) is necessary for BRE to hold. The interpretation of what happens otherwise
is that p(π) → 0 and Z(π)/u = Θ(1/p(π)) → ∞ when ε → 0, so when ε is very small, Z(π)
has an enormous value but π is practically never sampled. We can have m1(π) > 0 only when
m1(π)+m2(π) > r. Note that the conditions in this theorem depend not only on the rates λ j, but
also on the topology of the network, via the Z(π)’s.

The conditions of Corollary 5.2 are equivalent to the BRE conditions established in Gertsbakh and
Shpungin [2010] and Lomonosov and Shpungin [1999] for the case of independent links (exactly
one shock per link). Note that these are only sufficient conditions. Below, we will give an example
where the conditions are not satisfied and BRE does not hold. It corresponds to a situation where
there is a permutation π that has a significant (Θ(u)) contribution to u in (8), but this permutation
becomes too rare in the sense that p(π)→ 0 when ε→ 0, so the contribution from this permutation
is lost with very large probability when ε is too small.

For PMC or turnip with anti-shocks, we also have (8) and (9) with π ′ in place of π , and Theo-
rem 5.1 becomes

THEOREM 5.4. If p(π ′) =Θ(1) for all π ′, then the PMC and turnip estimators with anti-shocks
have BRE.

COROLLARY 5.5. If − lnλ j/(− lnλk) = Θ(1) for all j 6= k, then PMC and turnip with anti-
shocks give BRE.

PROOF. Recall that µ j =− ln(1−e−λ j)=− ln(λ j−O(λ 2
j )). Then, the given assumption implies

that µ j/Λ′k = Θ(1) for all j and k in Section 3.5. As a result, for each permutation π ′, p(π ′) =
∏

κ
k=1 µπ ′(k)/Λ′k = Θ(1) and Theorem 5.4 applies.

The sufficient BRE condition in Corollary 5.5 is weaker than that in Corollary 5.2. Note that these
conditions are not necessary, so we may have BRE even when the conditions fail. We now provide
an example where BRE holds with the anti-shocks but not with the shocks, showing that BRE indeed
holds more generally with the anti-shocks. The intuitive idea is that with the shocks, some important
permutations are still too rare (have probabilities that converge to 0 when u→ 0), whereas with the
anti-shocks, under appropriate conditions, none of the important permutations becomes rare.
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Fig. 1. A small graph with 4 nodes and 4 links.

Example 5.6. We consider a graph with 4 nodes and 4 links, as shown in Figure 1, with shocks
only on the links, one shock per link, and V0 = {1,4}. We have λ j = ε2 for j = 1,2 and λ j = ε

for j = 3,4, for some small ε > 0. Recall that when λ j is small, the probability that shock j occurs
before time 1 is 1− e−λ j ≈ λ j. Thus, the probability that the graph is disconnected because only
shock 1 occurs is approximately ε2, the probability that it is disconnected because only shocks 3
and 4 occurs is also approximately ε2, and all other possibilities have probability O(ε3). Therefore,
u≈ 2ε2, and u/(2ε2)→ 1 when ε → 0. Here, λ3/λ1 = 1/ε → ∞ when ε → 0, so the conditions of
Corollary 5.2 do not hold. However, − lnλ3/(− lnλ1) =− lnε/(−2lnε) = 1/2 and this quantity is
either 1/2 or 1 or 2 for the other pairs (i, j). Therefore, Corollary 5.5 applies.

Table I. Simulation results for a small graph, n = 106

PMC with shocks PMC with anti-shocks

ε W̄n RE2[W̄n] W̄n RE2[W̄n]

10−1 1.998e-2 3.87 1.978e-2 1.112
10−2 2.007e-4 48.75 1.997e-4 1.640
10−4 1.960e-8 4996.67 1.999e-8 1.708
10−6 1.000e-12 1.000e-6 2.001e-12 1.706
10−8 1.000e-16 0.000 1.998e-16 1.709
10−10 1.000e-20 0.000 2.003e-20 1.705

Table I shows the estimated unreliability W̄n and its estimated relative variance RE2[W̄n] =
S2

n/(nW̄ 2
n ), based on n = 106 independent replications, for PMC with shocks and PMC with anti-

shocks, with some small values of ε . For PMC with anti-shocks, W̄n is always close to u≈ 2ε2 and
the RE remains stable when ε→ 0, as expected. For PMC with shocks, when ε is small, the estima-
tor W̄n is erratic and eventually becomes close to ε2 ≈ u/2 instead of u, while the estimated RE is 0
most of the time (see the values in light blue). What happens is the probability that shocks 3 and 4
are the first two shocks (in any order) in the permutation π converges to 1, and the probability that
shock 1 comes before these two converges to 0. When shocks 3 and 4 come first, the probability of
failure is Z(π)≈ ε2. And if this occurs in all realizations, then U = ε2 in all cases and the empirical
variance is S2

n = 0. In other words, a graph failure coming from shock 1 is never observed, and this
causes an apparent bias, because this part of the contribution to u is missing. In reality, there is no
bias and the true RE is very large. In the rare cases where failure comes from shock 1 for one or
more realizations, the empirical RE would be very large. We can see this for ε = 10−2 and 10−4.

6. ADAPTING GS TO THE MO MODEL
6.1. GS with shocks
We now adapt the GS algorithm proposed in Botev and Kroese [2012] and Botev et al. [2013a] for
independent links to the MO copula setting. This algorithm provides an unbiased estimator with
low relative error for the unreliability u. It addresses the rare-event issue by forcing the sampling of
more realizations of the vector Y of shock times in the region where the system is failed at time 1.
To make our formulation compatible with the GS algorithm developed in Botev et al. [2013a], so we

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Z. Botev, P. L’Ecuyer, R. Simard, and B. Tuffin

can reuse the general algorithm as it is described there, we take S(Y) = 1/S̃(Y) as the importance
function in the splitting method. In this GS formulation, the rare event occurs when S(Y) > 1 and
the level thresholds are between 0 and 1 in increasing order. When network failure is a rare event,
most realizations of S(Y) will be small (much closer to 0 than to 1) under the original sampling
distribution, and we want to apply GS to get more realizations for which S(Y) > 1. For this, we
choose an integer s ≥ 2 called the splitting factor, an integer τ > 0, and thresholds 0 = γ0 < γ1 <
· · ·< γτ = 1, such that

ρt = P[S(Y)> γt | S(Y)> γt−1]≈ 1/s

for t = 1, . . . ,τ (except for ρτ , which can be larger than 1/s), just like in Botev et al. [2013a], and
we apply GS in the same way. Botev et al. [2013a] recommend s = 2 and give an adaptive pilot
algorithm to estimate good values of the splitting levels γt . The GS algorithm returns an unbiased
estimator even if ρt 6= 1/s, but the variance and running time depend on the choice of thresholds.

For each level γt , we construct a Markov chain {Yt,`, `≥ 0} with a stationary density equal to the
density of Y conditional on S(Y)> γt , given by

ft(y)
def
= f (y)

I[S(y)> γt ]

P[S(Y)> γt ]
, (10)

where f ≡ f0 is the unconditional density of Y. The transition kernel density of this Markov chain,
which is the density of the next state Yt,` conditional on the current state Yt,`−1, is denoted by
κt(· | Yt,`−1). One possibility for the construction of κt is via Gibbs sampling, as explained later.

At the t-th stage, if a Markov chain starts from a state having density ft−1 and evolves according
to the kernel κt−1(· | Yt−1, j−1), then each visited state also has density ft−1, which is a stationary
density for the Markov chain with kernel κt−1. In particular, the chain will never again go below the
level γt−1 that we have already reached.

ALGORITHM 7: : A GS algorithm based on shocks; returns U , an unbiased estimate of u
Require: s,τ,γ1, . . . ,γτ

Generate a vector Y of shock times from its unconditional density f .
if S(Y)> γ1 then

X1←{Y}
else

return U ← 0
for t = 2 to τ do

Xt ← /0 // states that have reached level γt
for all Y0 ∈Xt−1 do

for `= 1 to s do
sample Y` from the density κt−1(· | Y`−1)
if S(Y`)> γt [≡ {S̃(Y`)< 1/γt}] then

add Y` to Xt
return U ← |Xτ |/sτ−1, an unbiased estimate of u.

Algorithm 7 states this procedure with a single starting chain. It returns an unbiased estimator
U of u. In the algorithm, Xt denotes a set of latent states Y that have reached the level γt . This
algorithm will be invoked n times, independently, and the empirical mean Ūn and variance S2

n of
the n realizations U1, . . . ,Un of U can be used to estimate the unreliability u and the variance of U .
Proposition 1 of Botev et al. [2013a] states that these are both unbiased estimators (even if ρt 6= 1/s).
They can be used to compute a confidence interval on u. We do not have theoretical bounds on the
RE for GS when either when u→ 0 or for other asymptotic regimes. So in some sense, it should be
viewed as a heuristic. But we will see that it performs well empirically, even on large networks.
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To sample Y` from the density κt−1(· | Y`−1) in Algorithm 7, we use Gibbs sampling as follows.
We first select a permutation of the κ coordinate indexes {1, . . . ,κ} (it can be just the identity
permutation). Then we visit the κ coordinates in the order specified by the permutation. When we
visit coordinate Yj of the current Y, for some j, we erase the current value of Yj and we resample it
from its distribution conditional on S(Y) > γt−1, given the other coordinates of Y. Then the chain
will never again go below the level γt−1 that we have already reached. If Y has density ft−1 and we
resample any of its coordinates as just described, the modified Y still has density ft−1.

In fact, there are just two possibilities for the conditional distribution of Yj when we resample
it. Suppose we currently have Yj < 1/γt−1. If by changing Yj to a value larger than 1/γt−1 we
would have S(Y) ≤ γt−1 (that is, removing the shock j would make the system operational at time
1/γ j−1), then we must resample Yj from its distribution conditional on Yi < 1/γt−1. Otherwise, we
resample it from its original distribution, because shock j alone has no influence on the failure
time of the system, given the occurence times of the other shocks. This Gibbs sampler is stated
in Algorithm 8. In this algorithm, (Y1, . . . ,Yj−1,∞,Yj+1, . . . ,Yκ) represents the current vector Y but
where shock j never occurs. Thus, the condition S(Y1, . . . ,Yi−1,∞,Yi+1, . . . ,Yκ) ≤ γt−1 means that
the graph becomes operational at level γt−1 (or time 1/γt−1) when shock j is removed.

ALGORITHM 8: : Gibbs sampling for the transition density κt−1

Require: Y = (Y1, . . . ,Yκ ) for which S(Y)> γt−1 and a permutation π of {1, . . . ,κ}.
for k = 1 to κ do

j← π(k)
if S(Y1, . . . ,Y j−1,∞,Y j+1, . . . ,Yκ )≤ γt−1 then

resample Y j from its density truncated to (0,1/γt−1)
else

resample Y j from its original density
return Y as the resampled vector.

If Yj is exponential with rate λ j, its distribution conditional on Yj < 1/γ can be generated by inver-
sion by generating U uniformly over (0, 1−exp[−λ j/γ]) and returning Yj =− ln(1−U)/λ j (a trun-
cated exponential). To see this, note that we want − ln(1−U)/λ j < 1/γ , i.e., U < 1− exp[−λ j/γ].

Checking the condition that S(Y1, . . . ,Yj−1,∞,Yj+1, . . . ,Yκ) ≤ γt−1 in the Gibbs sampling algo-
rithm could be a bit tricky when a single component can be affected by more than one type of
shock. To do that, one must first identify the set G of all components i∈ s( j) that did not already fail
due to another shock before time 1/γt−1, and then check if the system is still failed at time 1/γt−1 if
all components in G are put in the operational state. To facilitate the identification of G, we maintain
a table that gives the number di of shocks that affect component i and that have already occurred,
for each i. When that number exceeds 1 for component i, we know that component i is still failed
even if we remove a shock that affects it.

6.2. GS with anti-shocks
In the dual approach, we generate and maintain a vector of anti-shock times R=(R1, . . . ,Rκ) instead
of a vector Y of shock times. The resulting algorithm is very similar to the GS algorithm in Botev
et al. [2013a] and in Algorithm 7. In this algorithm, R is the vector of anti-shock times and S(R) is
the time at which the system gets repaired. To resample from the conditional density κt−1(· |R`−1),
we use Gibbs sampling as follows. At each step, we resample one coordinate R j, as in Algorithm 8.
If the anti-shock j would repair the network in the current configuration, we resample R j from its
exponential density truncated to (γt−1,∞), otherwise we resample it from its original exponential
density. Thus, when resampling the time of an anti-shock j, we must first check what links this
anti-shock would immediately repair, and see if adding those links would make V0 connected. The
corresponding Gibbs sampler is stated in Algorithm 10 and the splitting procedure is in Algorithm 9,
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for a single starting chain. In our experiments, we did not find much difference in performance
between these two versions of GS (shocks vs anti-shocks).

ALGORITHM 9: : A GS algorithm based on anti-shocks; returns U , an unbiased estimate of u
Require: s,τ,γ1, . . . ,γτ

Generate a vector R of anti-shock times from its unconditional density.
if S(R)> γ1 then

X1←{R}
else

return U ← 0
for t = 2 to τ do

Xt ← /0 // states that have reached level γt
for all R0 ∈Xt−1 do

for `= 1 to s do
sample R` from the density κt−1(· | R`−1)
if S(R`)> γt then

add R` to Xt
return U ← |Xτ |/sτ−1, an unbiased estimate of u.

ALGORITHM 10: : Gibbs sampling for anti-shocks density κt−1(· | R)

Require: R = (R1, . . . ,Rκ ) for which S(R)> γt−1 and a permutation π of {1, . . . ,κ}.
for k = 1 to κ do

j← π(k)
if S(R1, . . . ,R j−1,0,R j+1, . . . ,Rκ )≤ γt−1 then

resample R j from its density truncated to (γt−1,∞)
else

resample R j from its original density
return R as the resampled vector.

7. DATA STRUCTURES FOR AN EFFICIENT IMPLEMENTATION
For an efficient implementation of the PMC, turnip, and GS algorithms, we need a representation of
the graph that permit us to identify rapidly which conditional distribution should be used to resample
a shock or an anti-shock. The representation must be quick and easy to update after a shock or anti-
shock has been resampled. We have used a modification of the representation in Botev et al. [2013a],
summarized here (this description is largely borrowed from Botev et al. [2013a]).

The graph is represented by a data structure that contains the set of nodes and the set of links,
each one in an array. Each node has a list of adjacent links and corresponding neighbors. Each
link i = (k, `) connects a pair of nodes k and `. The fixed (permanent) parameters of the links are
memorized in this structure. We also need a table of size κ that lists the subsets s( j) for j = 1, . . . ,κ
and the means 1/λ j for the exponential distributions for the associated failure rates. These structures
are stored in single objects that do not change during the execution of the algorithm.

Some of the graph characteristics change during execution and differ across the different instances
of the Markov chain. For those, we must keep one copy for each instance of the chain. This is the
case for Y = (Y1, . . . ,Yκ). From this Y, we easily obtain X(γ) and we can compute Φ(X(γ)) for
any level γ . We also want a data structure that permits us to see immediately from what conditional
distribution each Yj should be resampled in the conditional Gibbs sampling at the current level γ ,
that tells us immediately the value of X(γ), and that can be updated quickly after Yj is changed. The
information in this data structure represents the state of the Markov chain in the splitting algorithm.
It changes at each step of the chain and must be cloned each time we make a new copy of the chain,
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so it must be kept small. In our implementation, we maintain a set of connected components at
each level γt−1 as described in Botev et al. [2013a]. We maintain a table that gives the number di of
shocks j that have already occurred in the current configuration Y and that affect link i, for each i.

When a given Yj is modified, if 1/Yj was larger than the current level γt−1 and it becomes smaller,
then for each i ∈ s( j), the counter di is decreased by 1, and if di = 0, link i is added to the con-
figuration (becomes operational). In the latter case, if this link connects two nodes k and ` that are
not in the same connected component, these two components are merged into a single one. This is
straightforward. If 1/Yj was smaller than the current level γt−1 and it becomes larger, then for each
i ∈ s( j), the counter di is increased by 1, and if di = 1 (the link was operational before adding this
shock), link i is removed from the configuration (becomes failed). In the latter case, if i = (k, `),
then we must check if there is still a path between k and ` after removing link i; if not, then the
component (or tree) that contains these nodes must be split in two. This verification is on average
the most time-consuming task. It is done as explained in Botev et al. [2013a].

When the level is increased from γt−1 to γt , we take all the shocks j for which γt−1 < 1/Yj ≤ γt ,
and for each of them, for each i ∈ s( j), we decrease di by 1, and if di = 0, we add link i to the
configuration and if this link connects two nodes that are not in the same connected component, we
merge these two components into a single one.

In the GS algorithm, when simulating at level γt−1, after each step of the Markov chain we must
check if Φ(X(γt)) = 0, i.e., if we have reached the next level γt . If we did, we make a copy of the
chain and insert it in Xt , to be used as one of the starting points at the next stage. To compute
Φ(X(γt)), we temporarily add the links i that become operational when we remove the shocks j for
which γt−1 < 1/Yj ≤ γt , and check if this connects the nodes in V0.

8. NUMERICAL EXPERIMENTS
In this section, we compare the performance of the various algorithms introduced earlier, on some
examples. In our examples, we consider one shock for each link and one shock for each node, with
the exception of the source and target nodes on which there are no shocks. A shock on a node
takes down all the links connected to that node. We assume that all these shocks have the same rate
λ j = λ . Then, all anti-shocks also have the same µ j = µ =− ln(1− e−λ ). Since λ will be small, µ

will be large. For each example, we tried various values of λ .
For the PMC and turnip, unless indicated otherwise, we generated all the shock times and sorted

them to find the permutation. For the basic PMC and turnip, we also report results when we generate
π directly, and compare. We find very little difference in computing time. In the tables, we append π

to the algorithm name when π is generated directly without generating the times, we append “rev”
(for “reverse”) when the critical number is computed by removing the shocks, and we append “anti”
when the estimator U ′ based on anti-shocks is used. The estimator was always computed using
the faster O(c2) formula (2) or (3) when it was reasonably accurate; otherwise we switched to the
slower but more accurate method of Higham [2009] mentioned in Section 3.2. For PMC, we also
used the formula based on the beta cdf, that holds for equal λ j’s, for comparison.

For GS, the splitting factor is always s = 2, and the levels and their number τ are estimated by
the adaptive Algorithm 3 of Botev et al. [2013a], with n0 = 104.

The sample size n varies from n = 104 to n = 106, depending on the example. In the tables,
we report the unreliability estimate W̄n, the empirical relative variance of W , S2

n/(W̄n)
2, the relative

error of W̄n, defined as RE[W̄n] = Sn/(
√

nW̄n), the average critical shock or anti-shock number C̄, the
CPU time T (in seconds) required by the n runs of the algorithm, and the work-normalized relative
variance (WNRV) of W̄n, defined as WNRV[W̄n] = T ×RE2[W̄n]. This WNRV is approximately
independent of n when n is large. It compares unbiased estimators by taking into account both the
variance and the computing time. One should keep in mind that T (and therefore the WNRV) may
depend significantly on the computing platform and on the implementation. For PMC and turnip,
it also depends very much on the formula used to compute the conditional probability. We put a •
next to the CPU time when it is computed using the matrix exponential (this is slow), a ◦ when one
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of the formulas (2) or (3) was used (this is faster), and nothing when using one of the formulas (5)
or (6) for the beta distribution available for PMC when the λ j are all equal (the fastest method).

Example 8.1. We start our numerical illustrations with a dodecahedron graph with 20 nodes and
30 links, often used as a benchmark in network reliability estimation [Botev et al. 2013a; Cancela
and El Khadiri 1995; Cancela et al. 2009; Cancela et al. 2009; Tuffin et al. 2014], and shown in
Figure 2 (taken from Botev et al. [2013a]). We have 48 different shocks in total. The network is
operational when nodes 1 and 20 are connected.

Fig. 2. A dodecahedron graph with 20 nodes and 30 links.

Table II reports simulation results with n = 106, for λ = 10−3 and 10−7. We see that for the
PMC and turnip methods, the RE is about the same for all variants and all values of λ , except for
the turnip with anti-shocks, for which the RE is approximately halved. This agrees with the BRE
property. In fact, the RE and WNRV would remain approximately the same for any smaller λ . For
GS, the RE increases slightly when λ decreases, and the WNRV increases even more, because the
computing time T increases significantly and is approximately proportional to the number of levels.
(The number of levels for GS is around − log2(u) ≈ 67 for λ = 10−20). In terms of WNRV, turnip
with anti-shocks wins (followed closely by PMC-rev and PMC-anti) in all cases, despite its larger
average critical number. Its advantage over GS increases as λ decreases. GS has a smaller RE than
PMC-turnip, but is much slower, and its WNRV is larger as a result. For λ = 10−7, the turnip esti-
mators can be computed only for the anti-shock versions, because of subtractive cancellation when
computing estimators smaller than 10−16 from F(t) = 1− F̄(t). The matrix exponential method of
Higham [2009] computes F̄(t) and is not designed to compute F(t) directly when it is very small.

We performed further experiments in which the shocks on nodes had rates 10 times larger, or 10
times smaller, than those on links, and the results were qualitatively very similar. We observed that
the RE increases when the shocks on links have larger rates than those on nodes.

Example 8.2. Following L’Ecuyer et al. [2011], we construct a larger graph by putting three
copies of the dodecahedron in parallel, merging the three copies of node 1 as a single node, and
the three copies of node 20 as a single node. The resulting graph has 56 nodes and 90 links. Again,
we take V0 = {1,20}. We have a shock on each link and on each node not in V0, for a total of
144 shocks, all with rate λ . Table III gives simulation results for n = 106, for λ = 0.1 and λ =
0.001. GS performs well in both cases. The variance of the PMC and turnip estimators is about
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Table II. Dodecahedron with n = 106

algorithm W̄n S2
n/W̄ 2

n RE[W̄n] C̄ T (sec) WNRV

λ = 10−3

PMC 1.62e-8 993 0.032 12.7 35 0.035
PMC 1.62e-8 993 0.032 12.7 • 62 0.062
PMC-π 1.59e-8 1009 0.032 12.7 21 0.022
PMC-rev 1.62e-8 993 0.032 12.7 17 0.017
PMC-rev 1.62e-8 993 0.032 12.7 • 42 0.042
PMC-anti 1.60e-8 1004 0.032 36.3 17 0.018
PMC-anti 1.60e-8 1004 0.032 36.3 ◦ 29 0.029
turnip 1.63e-8 894 0.030 10.7 • 72 0.064
turnip-π 1.59e-8 920 0.030 10.7 • 64 0.059
turnip-anti 1.58e-8 296 0.017 35.8 ◦ 45 0.013
GS 1.59e-8 53 0.007 437 0.023
GS-anti 1.60e-8 56 0.007 425 0.024

λ = 10−7

PMC 1.65e-20 1047 0.032 12.7 32 0.034
PMC-π 1.59e-20 1090 0.033 12.7 21 0.023
PMC-rev 1.65e-20 1047 0.032 12.7 17 0.018
PMC-anti 1.66e-20 1044 0.032 36.3 18 0.019
PMC-anti 1.66e-20 1044 0.032 36.3 ◦ 29 0.030
turnip-anti 1.58e-20 311 0.018 35.8 ◦ 44 0.014
GS 1.59e-20 143 0.012 982 0.140
GS-anti 1.58e-20 124 0.011 1106 0.137

100 times larger than that of GS for λ = 0.1, For λ = 0.001, the ratio is much larger, although
the empirical values given in the table are very far from the exact ones: W̄n underestimates u by
several orders of magnitude, and S2

n certainly underestimates the true variance in the same way, so
the estimated RE and WNRV reported in the table are meaningless. We have put these meaningless
numbers in light blue, in all the tables. This may seem to contradict the BRE property that we
have proved! The explanation is that in the case of this larger graph, when λ is small, only a tiny
fraction of the 144! permutations π have a significant contribution in the sum (8), and the PMC
and turnip rarely generate these important permutations. This is a rare-event situation. Moreover,
this phenomenon is amplified when λ decreases, because the relative weight of the very rare most
important permutations increases. Recall that we have proved BRE for an asymptotic regime where
λ → 0 while the graph topology is fixed. When λ is fixed, the RE might actually increase very fast
as a function of the size of the graph, or the number of shocks. This is what happens here.

Example 8.3. Our next set of examples is with a square lattice graph, as shown in Figure 3.
Each node is connected to its neighbors on the left, right, up and down, when they exist. The set
V0 contains two opposite corners. We report experiments with 20× 20 and 40× 40 lattices. The
first has 400 nodes, 760 links, and 1158 different shocks. The second has 1600 nodes, 3120 links,
and 4718 different shocks. With these large numbers of shocks, the number of permutation π is
astronomical, so the PMC and turnip methods might not be able to generate permutations π that
contribute significantly to u in (8). This would translate into gross under-estimations of u. The
results, in Tables IV and V, confirm this.

For the 20× 20 graph, GS works nicely and is clearly the most efficient method. The shock
and anti-shock versions are equally good. It still works well for the 40× 40 graph, except that for
λ = 10−10, the estimates returned by GS and GS-anti differ by more than two (empirical) standard
deviations. We re-ran this case independently with n = 105 and obtained W̄n ≈ 7.7× 10−20 and
RE[W̄n]≈ 0.036 for both GS and GS-anti. The PMC and turnip methods are much more noisy than
GS. In the PMC case, where we can use the beta cdf to compute the conditional expectation because
the λ j’s are all equal, the two versions that use the construction process (removes the shocks) are
much faster than all other methods. However, their variance is much larger than that of GS. Their RE
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Table III. Three dodecahedrons in parallel, n = 106

algorithm W̄n S2
n/W̄ 2

n RE[W̄n] C̄ T (sec) WNRV

λ = 0.1
pmc 1.79e-5 3157 0.056 50 207 0.66
pmc-π 1.73e-5 2912 0.054 50 167 0.49
pmc-rev 1.79e-5 3157 0.056 50 53 0.17
pmc-anti 1.72e-5 2410 0.049 95 52 0.13
turn 1.77e-5 2572 0.051 38 • 771 1.98
turn-π 1.77e-5 2320 0.048 38 • 734 1.70
turn-anti 1.73e-5 1473 0.038 94 ◦ 215 0.32
GS 1.79e-5 31 0.0056 1094 0.034
GS-anti 1.78e-5 30 0.0055 1141 0.034

λ = 0.001

pmc 1.84e-35 2.5e5 0.50 50 210 51
pmc-π 1.38e-35 3.3e5 0.57 50 175 57
pmc-rev 1.84e-35 2.5e5 0.50 50 51 13
pmc-anti 6.10e-34 9.8e5 0.99 95 52 52
turn-anti 1.20e-29 5.7e5 0.75 94 ◦ 216 12
GS 4.13e-24 158 0.013 4366 0.70
GS-anti 4.06e-24 197 0.014 3552 0.70

is up to 100% for the 20×20 graph. For the 40×40 graph, the RE is certainly much larger, but the
PMC and turnip methods are so noisy that the results (including the RE estimators) are meaningless.
These methods underestimate u by huge factors. They miss the important permutations among the
4718! different permutations of the shocks. For the PMC and turnip methods that do not use the
beta cdf, most of the CPU time is to compute the conditional expectation.

s

t

Fig. 3. A 5×5 lattice graph.

Example 8.4. We now consider a complete graph with n0 nodes, with one link for each pair of
nodes, and V0 = {1,n0}. We take n0 = 30, which gives 435 links and 463 shocks, and n0 = 100,
which gives 4950 links and 5048 shocks. The results for n0 = 30, n = 105, λ = 0.5 and 0.1, are
given in Tables VI. We see that GS is much more efficient than all PMC and turnip methods, which
have much larger RE and give estimates that vary by up to a factor of 3 for λ = 0.5, and are off by
huge factors for λ = 0.1, with n = 105. We redid some experiments with n = 107: the variance S2

n
was similar, the REs were still quite large, and the estimates were still completely wild. The PMC
methods with anti-shocks are much faster than all other methods because they use the beta cdf to
compute the conditional expectation. The results for n0 = 100, with n = 104 and λ = 0.5, are in
Table VII. Only GS gives meaningful estimates in that case.

Example 8.5. Here we consider a case where the critical shock number Cs is much smaller than
the critical anti-shock number Ca, to illustrate a situation where using the destruction process with
shocks is much more efficient than using anti-shocks. We take a graph with 202 nodes and 202 links,
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Table IV. 20×20 lattice graph, n = 105

algorithm W̄n S2
n/W̄ 2

n RE[W̄n] C̄ T (sec) WNRV

λ = 10−5

PMC 6.67e-10 9.9e4 1.0 202 1062 1050
PMC-π 1.34e-9 4.9e4 0.70 202 928 457
PMC-rev 6.67e-10 9.9e4 1.0 202 60 60
PMC-anti 6.73e-10 9.8e4 0.99 957 60 58
turnip 6.67e-10 9.9e4 1.0 176 • 4380 4350
turnip-π 1.34e-9 4.9e4 0.70 176 • 3868 1900
turnip-anti 9.61e-10 9.3e3 0.30 905 ◦ 1928 179
GS 8.46e-10 62 0.025 3655 2.3
GS-anti 7.97e-10 61 0.025 3730 2.3

λ = 10−10

PMC 1.34e-19 5.0e4 0.71 202 1018 509
PMC-π 2.68e-19 2.5e4 0.50 202 977 244
PMC-rev 1.34e-19 5.0e4 0.71 202 60 29
PMC-anti 2.98e-34 2.5e4 0.50 957 60 15
turnip-anti 3.01e-20 3.0e4 0.55 905 ◦ 1694 514
GS 8.24e-20 121 0.035 4899 5.9
GS-anti 8.00e-20 114 0.034 4974 5.7

Table V. 40×40 lattice graph, n = 104

algorithm W̄n S2
n/W̄ 2

n RE[W̄n] C̄ T (sec) WNRV

λ = 10−5

PMC 6.1e-27 1.0e4 1 818 2234 2230
PMC-rev 6.1e-27 1.0e4 1 818 42 42
PMC-anti 3.4e-74 1.0e4 1 3907 43 43
turnip-anti 5.2e-35 9988 1 3680 ◦ 3946 3946
GS 7.98e-10 57 0.076 6183 35
GS-anti 7.88e-10 69 0.083 5980 41

λ = 10−10

PMC 2.0e-134 1.0e4 1 812 2199 2200
PMC-rev 2.0e-134 1.0e4 1 812 48 48
PMC-anti 3.1e-104 1.0e4 1 3906 55 55
turnip-anti 1.9e-33 1.0e4 1 3679 ◦ 3531 3531
GS 5.0e-20 151 0.12 6034 91
GS-anti 8.9e-20 124 0.11 6688 83

with V0 = {1,202}. There are two separate strings of 100 nodes and 101 links each that connect
these two nodes (two series system in parallel). There is one shock per link (only), at rate λ = 10−4.
The averages of Cs and Ca are approximately 3 and 200. Here all the PMC and turnip variants give
approximately the same RE, which is about 10−3 for n = 106, but the anti-shock versions are much
slower. The turnip with anti-shock is 20 times slower than the turnip with shocks, even though the
former uses the fast formula to compute the conditional probability whereas the shock versions
use the matrix method of Higham [2009] (because the faster formula is unstable): computing the
exponential of a 3× 3 matrix is sufficiently fast and (much more importantly) Cs � Ca. Another
interesting observation here is that the PMC-π is three times faster than the PMC for which we
generate and sort the shock times. Since the average critical shock is 3, generating and sorting 202
shock times wastes a lot of CPU time.
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Table VI. Complete graph with 30 nodes, n = 105

algorithm W̄n S2
n/W̄ 2

n RE[W̄n] C̄ T (sec) WNRV

λ = 0.5

PMC 6.30e-6 8.0e4 0.897 371 140 113
PMC-π 6.77e-7 5.8e4 0.759 371 127 73
PMC-rev 6.30e-6 8.0e4 0.897 371 15 12
PMC-anti 8.17e-7 8.0e4 0.896 93 15 12
turnip 1.78e-6 2.0e4 0.45 175 • 3417 691
turnip-π 3.07e-6 1.7e4 0.408 175 • 3404 568
turnip-anti 7.38e-7 8.1e4 0.898 93 • 710 572
GS 2.09e-6 36 0.0189 460 0.16
GS-anti 2.04e-6 36 0.0191 427 0.16

λ = 0.1

PMC 6.62e-88 1.0e5 1 371 142 142
PMC-rev 6.62e-88 1.0e5 1 371 15 15
PMC-anti 4.90e-87 1.0e5 1 94 16 16
turnip-anti 2.82e-83 9.5e4 0.975 93 ◦ 40 38
GS 3.33e-22 132 0.036 2058 2.7
GS-anti 3.16e-22 152 0.039 1580 2.4

Table VII. Complete graph with 100 nodes, n = 104

algorithm W̄n S2
n/W̄ 2

n RE[W̄n] T (sec) WNRV

λ = 0.5
GS 2.45e-20 109 0.11 3859 42
GS-anti 2.49e-20 128 0.11 4004 51

9. SUMMARY AND CONCLUSION
We introduced a static network reliability model with dependent link failures, based on a Marshall-
Olkin copula, and proposed several adapted versions of the PMC, turnip, and GS methods to esti-
mate accurately the unreliability u under this model when u is very small. Some of those algorithms
add shocks, others remove them by adding anti-shocks, one by one. We proved that the PMC and
turnip give estimators with BRE, under certain conditions on the shock rates, and these conditions
are weaker with the anti-shocks than with the shocks. We showed that when all shocks have the
same rates, the PMC estimators can be computed very quickly and accurately using the beta cdf.
This suggests and motivates the construction of models in which all rates are equal, with the pos-
sibility of having more than one shock on certain subsets of components. In a numerical example
of moderate size (a dodecahedron graph with different 48 shocks), the BRE property was observed
very clearly with both shocks and anti-shocks. One can then easily estimate an arbitrarily small
unreliability. In examples with larger graphs, with thousands of links and thousands of different
shocks, the PMC and turnip eventually fail to provide meaningful estimates, because the relevant
permutations become too rare. GS, on the other hand, remains viable for these large graphs, in all
our numerical experiments, even when u is extremely small. The two versions of GS (with shocks
and anti-shocks) perform equally well in the examples we tried. Still, GS should be viewed in some
sense as a heuristic, because no theoretical result is available on how the RE behaves asymptotically
with GS when u→ 0 or when the graph gets large. For the latter, it would certainly depend on the
graph topology. This provides matter for further research. Our development generalizes easily to
arbitrary multicomponent systems with binary states for the components and monotone increasing
structure function. However, certain details in the implementation would have to be adapted to the
problem at hand, in particular the data structures and methods to store and update the state of the
system, to determine the time at which the system fails or gets repaired, and the range in which the
new shock times should be resampled in GS. This is matter for further research.
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