
Noname manuscript No.
(will be inserted by the editor)

Simulation from the Tail of the Univariate and
Multivariate Normal Distribution

Zdravko Botev · Pierre L’Ecuyer

Received: date / Accepted: date

Abstract We study and compare various methods to generate a random vari-
ate or vector from the univariate or multivariate normal distribution truncated
to some finite or semi-infinite region, with special attention to the situation
where the regions are far in the tail. This is required in particular for certain
applications in Bayesian statistics, such as to perform exact posterior simula-
tions for parameter inference, but could have many other applications as well.
We distinguish the case in which inversion is warranted, and that in which
rejection methods are preferred.

Keywords truncated · tail · normal · Gaussian · simulation · multivariate

1 Introduction

We consider the problem of simulating a standard normal random variable
X, conditional on a ≤ X ≤ b, where a < b are real numbers, and at least
one of them is finite. We are particularly interested in the situation where the
interval (a, b) is far in one of the tails, that is, a � 0 or b � 0. The stan-
dard methods developed for the non-truncated case do not always work well
in this case. Moreover, if we insist on using inversion, the standard inversion
methods break down when we are far in the tail. Inversion is preferable to a
rejection method (in general) in various simulation applications, for example
to maintain synchronization and monotonicity when comparing systems with

Zdravko Botev
UNSW Sydney, Australia
Tel.: +(61) (02) 9385 7475
E-mail: botev@unsw.edu.au

Pierre L’Ecuyer
Université de Montréal, Canada and Inria–Rennes, France
Tel.: +(514) 343-2143
E-mail: lecuyer@iro.umontreal.ca

2 Zdravko Botev, Pierre L’Ecuyer

common random numbers, for derivative estimation and optimization, when
using quasi-Monte Carlo methods, etc. [11–14,5]. For this reason, a good in-
version method is needed, even if rejection is faster. We examine both rejection
and inversion methods in this paper.

We also consider simulation of a multivariate normal vector Xwith mean
zero and covariance matrix Σ ∈ Rd×d, conditional on X ≥ a, where the
inequality is componentwise.

These problems occur in particular for the estimation of certain Bayesian
regression models and for exact simulation from these models; see [6,4] and
the references given there. The simulation from the Bayesian posterior requires
repeated draws from a standard normal distribution truncated to different
intervals, often far in the tail. That is, we need fast and reliable algorithms to
generate X ∼ N(0, 1), conditional on a ≤ X ≤ b, for arbitrary real numbers
a < b.

Various methods have already been proposed to do that; see for example
[6,7,10,18,21,22]. Some methods work well when the interval [a, b] contains 0
or is not far from it, but not when a� 0 or b� 0. Other methods have been
designed for the right tail, that is, when a� 0 and b =∞, and use rejection.
These methods may be adapted in principle to a finite interval [a, b], but they
may become inefficient when the interval [a, b] is narrow. We also found no
reliable inversion method for an interval far in the tail (say, for a > 38; see
Section 2). Note that to generate X from a more general normal distribution
with mean µ and variance σ2 truncated to an interval (a′, b′), it suffices to
apply a simple linear transformation to recover the problem studied here.

Efficient and reliable simulation methods based on importance sampling
were developed recently in [3–5] for exact simulation from such multivariate
conditional distributions and to estimate the conditional probability P[a ≤
X ≤ b].

The aim of this paper is twofold. The first is to review and compare the
most popular methods for the univariate normal distribution, propose new
efficient methods for certain situations, and provide reliable software imple-
mentation of these methods. In particular, in the univariate setting we propose
a new accurate inversion method for arbitrarily large a and improvements to
commonly used methods. In some of our discussion, we assume that a > 0.
The case where b < 0 is covered by symmetry (just change the sign) and the
case where a ≤ 0 ≤ b can be handled by standard methods.

The second aim is to propose a simple acceptance-rejection method in the
multivariate setting, which, under some conditions, can yield an acceptance
probability that approaches unity as we move deeper and deeper into the
tail region. While [3] proposes a more complex method for simulation from
the truncated multivariate normal distribution than the much simpler one
considered here, the theoretical results in [3] do not apply when the target pdf
is the most general tail density (see (9) in Section 3). Thus, the multivariate
aspect in Section 3 of the present paper both fills an important theoretical gap
in [3] and described a simpler method, based on a multivariate exponential
proposal.

2 Simulation from Tail of Univariate Normal

In this section, we use φ to denote the density of the standard normal distribu-
tion (with mean 0 and variance 1), Φ for its cumulative distribution function

Simulation from the Tail of the Univariate and Multivariate Normal Distribution 3

(cdf), Φ for the complementary cdf, and Φ−1 for the inverse cdf defined as
Φ−1(u) = min{x ∈ R | Φ(x) ≥ u}. Thus, if X ∼ N(0, 1), Φ(x) = P[X ≤ x] =∫ x
−∞ φ(y)dy = 1− Φ(x). Conditional on a ≤ X ≤ b, X has density

φ(x)
Φ(b)−Φ(a) for a < x < b (1)

We denote this truncated normal distribution by TNa,b(0, 1).
It is well known that if U ∼ U(0, 1), the uniform distribution over the

interval (0, 1), then

X = Φ−1(Φ(a) + (Φ(b)− Φ(a))U) (2)

has exactly the standard normal distribution conditional on a ≤ X ≤ b. But
even though very accurate approximations are available for Φ and Φ−1, (2)
is sometimes useless for simulating X. One reason for this is that whenever
computations are made under the IEEE-754 double precision standard (which
is typical), any number of the form 1−ε for 0 ≤ ε < 2×10−16 (approximately)
is identified with 1.0, any positive number smaller than about 10−324 cannot
be represented at all (it is identified with 0), and numbers smaller than 10−308

are represented with less than 52 bits of accuracy.
This implies that Φ(x) = Φ(−x) is identified as 0 whenever x ≥ 39 and

is identified as 1 whenever −x ≥ 8.3. Thus, (2) cannot work when a ≥ 8.3.
In the latter case, or whenever a > 0, it is much better to use the equivalent
form:

X = −Φ−1(Φ(a)− (Φ(a)− Φ(b))U), (3)

which is accurate for a up to about 37, assuming that we use accurate ap-
proximations of Φ(x) for x > 0 and of Φ−1(u) for u < 1/2. Such accurate
approximations are available for example in [2] for Φ−1(u) and via the error
function erf on most computer systems for Φ(x). For larger values of a (and
x), a different inversion approach must be developed, as shown next.

2.1 Inversion far in the Right Tail

When Φ(x) is too small to be represented as a floating-point double, we will

work instead with the Mills’ [25] ratio, defined as q(x)
def
= Φ(x)/φ(x), which is

the inverse of the hazard rate (or failure rate) evaluated at x. When x is large,
this ratio can be approximated by the truncated series (see [1]):

q(x) ≈ 1

x
+

r∑
n=1

1× 3× 5× · · · × (2n− 1)

(−1)nx2n+1
. (4)

In our experiments with x ≥ 10, we compared r = 5, 6, 7, 8, and we found no
significant difference (up to machine precision) in the approximation of X in
3 by the method we now describe. In view of (3), we want to find x such that

4 Zdravko Botev, Pierre L’Ecuyer

Φ(x) = Φ(−x) = Φ(a) − (Φ(a) − Φ(b))u, for 0 ≤ u ≤ 1, when a is large. This
equation can be rewritten as h(x) = 0, where

h(x)
def
= Φ(a)− Φ(x) + (Φ(b)− Φ(a))u (5)

To solve h(x) = 0, we start by finding an approximate solution and then refine
this approximation via Newton iterations. We detail how this is achieved. To
find an approximate solution, we replace the normal cdf Φ in (3) by the stan-
dard Rayleigh distribution, whose complementary cdf and density are given
by F (x) = exp(−x2/2) and f(x) = x exp(−x2/2) for x > 0. Its inverse cdf
can be written explicitly as F−1(u) = (−2 ln(1 − u))1/2. This choice of ap-
proximation of Φ−1 in the tail has been used before (see for example [2] and
Section 4). It is motivated by the facts that F−1(u) is easy to compute and
that Φ̄(x)/F̄ (x) → 1 rapidly when x → ∞. By plugging F and F−1 in place
of Φ and Φ−1 in (3), and solving for x, we find the approximate root

x ≈
√
a2 − 2 ln (1− u+ u exp ((a2 − b2)/2)), (6)

which is simply the u-th quantile of the standard Rayleigh distribution trun-
cated over (a, b), with density

f(x) =
x exp(−(x2 − a2)/2)

1− exp(−(b2 − a2)/2)
for a < x < b. (7)

The next step is to improve the approximation (6) by applying Newton’s
method to (5). For this, it is convenient to make the change of variable x =

ξ(z), where ξ(z)
def
=
√
a2 − 2 ln(z) and z = ξ−1(x) = exp((a2 − x2)/2), and

apply Newton’s method to g(z)
def
= h(ξ(z)). Newton’s iteration for solving

g(z) = 0 has the form znew = z − g(z)/g′(z), where

g(z)

g′(z)
=

h(ξ(z))

h′(ξ(z))
· 1

ξ′(z)
, (by the chain rule)

= zξ(z)
Φ(ξ(z))− Φ(a) + u(Φ(a)− Φ(b))

φ(ξ(z))

= x
(
zq(x)− q(a)(1− u)− q(b)u exp

(
a2−b2

2

))
,

and the identity x = ξ(z) was used for the last equality. A key observation here
is that, thanks to the replacement of Φ by q, the computation of g(z)/g′(z) does
not involve extremely small quantities that can cause numerical underflow,
even for extremely large a.

The complete procedure is summarized in Algorithm 1, which we have
implemented in Java, Matlabr, and R. According to our experiments, the
larger the a, the faster the convergence. For example, for a = 50 one requires
at most 13 iterations to ensure δx ≤ δ∗ = 10−10, where δx represents the
relative change in x in the last Newton iteration.

Simulation from the Tail of the Univariate and Multivariate Normal Distribution 5

Algorithm 1 : Returns the u-quantile of TNa,b(0, 1)

Require: Input u ∈ (0, 1), δ∗

qa ← q(a)
qb ← q(b)

c← qa(1− u) + qbu exp(a
2−b2
2

)
δx ←∞
z ← 1− u+ u exp(a

2−b2
2

)

x←
√
a2 − 2 ln(z)

repeat
z ← z − x(zq(x)− c)
xnew ←

√
a2 − 2 ln(z)

δx ← |xnew − x|/x
x← xnew

until δx ≤ δ∗
return Quantile x

We note that for an interval [a, b] = [a, a + w] of fixed length w, when
a increases the conditional density concentrates closer to a. In fact, there is
practically no difference between generating X conditional on a ≤ X ≤ a+ 1
and conditional on X ≥ a when a ≥ 30, but there can be a significant difference
for small a.

2.2 Rejection Methods

We now examine rejection (or acceptance-rejection) methods, which can be
faster than inversion. A large collection of rejection-based generation meth-
ods for the normal distribution have been proposed over the years; see [6,
7,10,22] for surveys, discussions, comparisons, and tests. Most of them (the
fastest ones) use a change of variable and/or precomputed tables to speedup
the computations. In its most elementary form, a rejection method to gener-
ate from some density f uses a hat function h ≥ f and rescales h vertically
to a probability density g = h/

∫∞
−∞ h(y)dy, often called the proposal den-

sity. A random variate X is generated from g, is accepted with probability
f(X)/h(X), is rejected otherwise, and the procedure is repeated until X is
accepted as the retained realization. In practice, more elaborate versions are
used that incorporate transformations and partitions of the area under h.

Any of these proposed rejection methods can be applied easily if Φ(b)−Φ(a)
is large enough, just by adding a rejection step to reject any value that falls
outside [a, b]. The acceptance probability for this step is Φ(b) − Φ(a). When
this probability is too small, this becomes too inefficient and something else
must be done. One way is to define a proposal g whose support is exactly
[a, b], but this could be inefficient (too much overhead) when a and b change
very often. Chopin [6] developed a rejection method specially adapted to this
situation. It is based on a hat function defined by juxtaposing a large number
of vertical rectangles of different heights but equal surface over some finite
interval [amin, amax], and use an exponential proposal with rate a = amax (the

6 Zdravko Botev, Pierre L’Ecuyer

RejectTail variant of Algorithms 2 below) for the tail above amax or when
a > a′max. The fastest implementation uses 4000 rectangles, amax ≈ 3.486,
a′max ≈ 2.605. This method is fast, although it requires the storage of very
large precomputed tables, which could actually slow down computations on
certain type of hardware for which memory is limited, like GPUs.

Simple rejection methods for the standard normal truncated to [a,∞), for
a ≥ 0, have been proposed long ago. Marsaglia [19] proposed a method that
uses for g the standard Rayleigh distribution truncated over [a,∞). An efficient
implementation is given in [7, page 381]. Devroye [7, page 382] also gives an
algorithm that uses for g an exponential density of rate a shifted by a. These
two methods have exactly the same acceptance probability,

α(a) = a
√

2π exp(a2/2)Φ(a), (8)

which converges to 1 when a→∞. Geweke [8] and Robert [21] optimized the
acceptance probability to

β(a) = λ
√

2π exp
(
aλ− λ2/2

)
Φ(a)

by taking the rate λ = (a +
√
a2 + 4)/2 > a for the shifted exponential pro-

posal. However, the gain with respect to Devroye’s method is small and can
be wiped out easily by a larger computing time per step. For large a, both are
very close to 1 and there is not much difference between them.

We will compare two ways of adapting these methods to a truncation over
a finite interval [a, b]. The first one is to keep the same proposal g which is posi-
tive over the interval [a,∞) and reject any value generated above b. The second
one truncates and rescales the proposal to [a, b] and applies rejection with the
truncated proposal. We label them by RejectTail and TruncTail, respectively.
TruncTail has a smaller rejection probability, by the factor 1−Φ(a)/Φ(b), but
also entails additional overhead to properly truncate the proposal. Typically,
it is worthwhile only if this additional overhead is small and/or the interval
[a, b] is very narrow, so it improves the rejection probability significantly. Our
experiments will confirm this.

Algorithms 2, 3, 4, state the rejection methods for the TruncTail case with
the exponential proposal with rate a [7], with the rate λ proposed in [21],
and with the standard Rayleigh distribution, respectively, extended to the
case of a finite interval [a, b]. For the RejectTail variant, one would remove the
computation of q, replace ln(1−qU) by lnU , and add X ≤ b to the acceptance
condition. Algorithm 5 gives this variant for the Rayleigh proposal.

Algorithm 2 : X ∼ TNa,b(0, 1) with exponential proposal with rate a, trun-
cated
Ka ← 2a2

q ← 1− exp(−(b− a)a)
repeat

Generate U, V ∼ U(0, 1), independent
X ← − ln(1− qU)
E ← − ln(V)

until X2 ≤ KaV
return a+X/a

Simulation from the Tail of the Univariate and Multivariate Normal Distribution 7

Algorithm 3 : X ∼ TNa,b(0, 1) with exponential proposal with rate λ, trun-
cated
λ← (a+

√
a2 + 4)/2

q ← 1− exp(−(b− a)λ)
repeat

Generate U, V ∼ U(0, 1), independent
X ← a− ln(1− qU)/λ

until V ≤ exp((X − λ)2/2)
return a+X/a

Algorithm 4 : X ∼ TNa,b(0, 1) with Rayleigh proposal, truncated

c← a2/2
q ← 1− exp(c− b2/2)
repeat

Simulate U, V ∼ U(0, 1), independently.
X ← c− ln(1− qU)

until V 2X ≤ a
return X ←

√
2X

Algorithm 5 : X ∼ TNa,∞(0, 1) with Rayleigh proposal and RejectTail

c← a2/2
repeat

Simulate U, V ∼ U(0, 1), independently.
X ← c− ln(U)

until V 2X ≤ a and 2X ≤ b ∗ b
return

√
2X

When the interval [a, b] is very narrow, it makes sense to just use the
uniform distribution over this interval for the proposal g. This is suggested
in [21] and shown in Algorithm 6. Generating from the proposal is then very
fast. On the other hand, the acceptance probability may become very small
if the interval is far in the tail and b − a is not extremely small. Indeed, the
acceptance probability in this case is:

√
2π exp(a2/2)(Φ(a)−Φ(b))

b−a = q(a)−q(b) exp((a2−b2)/2)
b−a ,

which decays at a rate of 1/a when a→∞ while (b− a) remains constant.

Algorithm 6 : X ∼ TNa,b(0, 1) with uniform proposal, truncated
repeat

Simulate U, V ∼ U(0, 1), independently.
X ← a+ (b− a)U

until 2 lnV ≤ a2 −X2

return X

Another choice that the user can have with those generators (and for any
variate generator that depends on some distribution parameters) is to either

8 Zdravko Botev, Pierre L’Ecuyer

precompute various constants that depend on the parameters and store them in
some “distribution” object with fixed parameter values, or to recompute these
parameter-dependent constants each time a new variate is generated. This
type of alternative is common in modern variate generation software [15,17].
The first approach is worthwhile if the time to compute the relevant constants
is significant and several random variates are to be generated with exactly
the same distribution parameters. For the applications in Bayesian statistics
mentioned earlier, it is typical that the parameters a and b change each time
a new variate is generated [6]. But there can be applications in which a large
number of variates are generated with the same a and b.

For one-sided intervals [a,∞), the algorithms can be simplified. One can
use the RejectTail framework and since b = ∞, there is no need to check if
X ≤ b. When reporting our test results, we label this the OneSide case.

Note that computing an exponential is typically more costly than com-
puting a log (by a factor of 2 or 3 for negative exponents and 10 for large
exponents, in our experiments) and the latter is more costly than computing
a square root (also by a factor of 10). This means significant speedups could
be obtained by avoiding the recomputing of the exponential each time at the
beginning of Algorithms 2, 3, and 4. This is possible if the same parameter b
is used several times, or if b =∞, or if we use RejectTail instead of TruncTail.

2.3 Speed Comparisons

We report a representative subset of results of speed tests made with the
different methods, for some pairs (a, b). In each case, we generated 108 (100
millions) truncated normal variates, added them up, printed the CPU time
required to do that, and printed the sum for verification. The experiments
were made in Java using the SSJ library [15], under Eclipse and Windows
10, on a Lenovo X1 Carbon Thinkpad with an Intel Core(TM) i7-5600U (sin-
gle) processor running at 2.60 GHz. All programs were executed in a single
thread and the CPU times were measured using the stopwatch facilities in
class Chrono of SSJ, which relies on the getThreadCpuTime method from
the Java class ThreadMXBean to obtain the CPU time consumed so far by a
single thread, and subtracts to obtain the CPU time consumed between any
two instructions.

The measurements were repeated a few times to verify consistency and
varied by about 1 to 2 percent at most. The compile times are negligible
relative to the reported times. Of course, these timings depend on CPU and
memory usage by other processes on the computer, and they are likely to
change if we move to a different platform, but on standard processors the
relative timings should remain roughly the same. They provide a good idea of
what is most efficient to do.

Tables 1 to 2 report the timings, in seconds. The two columns “recompute”
and “precompute” are for the cases where the constants that depend on a and

Simulation from the Tail of the Univariate and Multivariate Normal Distribution 9

b are recomputed each time a random variate is generated or are precomputed
once and for all, respectively, as discussed earlier.

Table 1 Time to generate n = 108 variates for [a, b] = [3.0, 3.1] (left pane) and [a, b] =
[7.0, 8.0] (right pane).

Method CPU time (sec.)
recom. precom.

Generation in [a, b)
ExponD 6.46 6.22
ExponDRejectTail 23.04 23.20
ExponR 16.63 9.92
ExponRRejectTail 32.40 32.40
ExponRRejectTailLog 25.10 25.30
Rayleigh 10.29 4.60
RayleighRejectTail 15.23 15.33
Uniform 4.26 4.34
InverseSSJ 15.14 8.14
InverseQuickSSJ 18.80 3.31
InverseRightTail 31.12 7.66

Generation in [a,∞)
ExponDOneSide 6.43 6.46
ExponROneSideLog 7.05 6.99
RayleighOneSide 4.07 4.41
InverseSSJOneSide 18.81 8.20
InverseRightTailOneSide 18.72 7.64

Method CPU time
recom. precom.

Generation in [a, b)
ExponD 11.70 6.16
ExponDRejectTail 6.04 6.08
ExponR 15.96 8.98
ExponRRejectTail 9.20 9.09
ExponRRejectTailLog 7.03 7.02
Rayleigh 9.86 4.27
RayleighRejectTail 3.91 3.99
Uniform 25.40 25.68
InverseSSJ 30.67 8.14
InverseRightTail 31.12 7.70

Generation in [a,∞)
ExponDOneSide 5.90 5.96
ExponROneSideLog 6.80 6.71
RayleighOneSide 3.74 4.05
InverseSSJOneSide 19.00 8.19
InverseRightTailOneSide 18.76 7.59

Table 2 Time to generate n = 108 variates for [a, b] = [100.0, 102.0] (left pane) and [a, b] =
[100.0, 100.0001] (right pane).

Method CPU time (sec.)
recom. precom.

Generation in [a, b)
ExponD 11.68 6.01
ExponDRejectTail 5.88 5.91
ExponR 15.79 8.86
ExponRRejectTail 9.13 9.02
ExponRRejectTailLog 6.93 6.96
Rayleigh 9.97 4.16
RayleighRejectTail 3.84 3.90
Uniform 650.62 656.42
InverseMillsRatio 22.31 15.97
Generation in [a,∞)
ExponDOneSide 5.77 5.82
ExponROneSideLog 6.72 6.63
RayleighOneSide 3.67 3.96
InverseMillsRatioOneSide 15.62 15.84

Method CPU time
recom. precom.

Generation in [a, b)
ExponD 12.31 6.83
ExponDRejectTail 543.80 546.58
ExponR 16.47 10.65
ExponRRejectTail 865.24 865.34
ExponRRejectTailLog 651.19 648.99
Rayleigh 10.59 5.07
RayleighRejectTail 323.08 322.41
Uniform 3.59 3.62
InverseMillsRatio 18.03 12.12
Generation in [a,∞)
ExponDOneSide 5.79 5.83
ExponROneSideLog 6.74 6.63
RayleighOneSide 3.66 3.99
InverseMillsRatioOneSide 15.67 15.84

ExponD, ExponR, and Rayleigh refer to the TruncTail versions of Algo-
rithms 2, 3, and 4, respectively. We add “RejectTail” to the name for the
RejectTail versions. For ExponRRejectTailLog, we took the log on both sides
of the inequality to remove the exponential in the “until” condition. Uniform
refers to Algorithm 6.

InversionSSJ refers to the default inversion method implemented in SSJ,
which uses [2] and gives at least 15 decimal digits of relative precision, com-
bined with a generic (two-sided) “truncated distribution” class also offered in
SSJ. InverseQuickSSJ is a faster but much less accurate version based on a

10 Zdravko Botev, Pierre L’Ecuyer

cruder approximation of Φ from [20] based on table lookups, which returns
about 6 decimal digits of precision. We do not recommend it, due to its
low accuracy. Moreover, the implementation we used does not handle well
values larger than about 5 in the right tail, so we report results only for
small a. InverseRightTail uses the accurate approximation of Φ together with
(3). InverseMillsRatio is our new inversion method based on Mills ratio, with
δ∗ = 10−10. This method is designed for the case where a is large, and our
implementation is designed to be accurate for a ≥ 10, so we do not report
results for it Table 1. For all the methods, we add “OneSide” for the simplified
OneSide versions, for which b =∞.

For the OneSide case, that is, b = ∞, the Rayleigh proposal gives the
fastest method in all cases, and there is no significant gain in precomputing
and storing the constant c = a2/2.

For finite intervals [a, b], when b− a is very small so Φ(b)/Φ(a) is close to
1, the uniform proposal wins and the RejectTail variants are very slow. See
right pane of Table 2. Precomputing the constants is also not useful for the
uniform proposal. For larger intervals in the tail, Φ(x) decreases quickly at
the beginning of the interval and this leads to very low acceptance ratios; see
right pane of Table 1 and left pane of Table 2. A Rayleigh proposal with the
RejectTail option is usually the fastest method in this case. Precomputing and
storing the constants is also not very useful for this option. For intervals closer
to the center, as in the left pane of Table 1, the uniform proposal performs
well for larger (but not too large) intervals, and the RejectTail option becomes
slower unless [a, b] is very wide. The reason is that for a fixed w > 0, Φ(a +
w)/Φ(a) is larger (closer to 1) when a > 0 is closer to 0.

3 Simulation from Tail of Multivariate Normal

Let φΣ(y) and

ΦΣ(a) = P[Y ≥ a], Y ∼ N(0, Σ),

denote the density and tail distribution, respectively, of the multivariate N(0, Σ)
distribution with (positive-definite) covariance matrix Σ ∈ Rd×d. In the multi-
variate extension to (1), we wish to simulate from the pdf (I{·} is the indicator
function):

φΣ(y)I{y ≥ a(γ)}
ΦΣ(a(γ))

, (9)

where maxi ai > 0, and γ is a tail parameter such that at least one component
of a(γ) diverges to∞ (that is, limγ↑∞ ‖a(γ)‖ =∞, see [23]). To simulate from
this conditional density, we describe an acceptance-rejection algorithm that
uses an optimally designed multivariate exponential proposal. Interestingly,
unlike the truncated exponential proposal in the one-dimensional setting (see
Algorithms 2 and 3), our multivariate exponential proposal is not truncated.
Before giving the details of the acceptance-rejection algorithm, we need to
introduce some preliminary theory and notation.

Simulation from the Tail of the Univariate and Multivariate Normal Distribution 11

3.1 Preliminaries and Notation

Define P as a permutation matrix, which maps (1, . . . , d)> into the permuta-
tion vector p = (p1, . . . , pd)

>, that is, P(1, . . . , d)> = p. Then, ΦΣ(a(γ)) =
P(PY ≥ Pa(γ)) and PY ∼ N(0,PΣP>) for any p. We will specify p shortly.

First, define the constrained (convex) quadratic optimization:

min
y

1

2
y>(PΣP>)−1y

subject to: y ≥ Pa(γ)

(10)

Suppose λ ∈ Rd is the Lagrange multiplier vector, associated with (10). Par-
tition the vector as λ = (λ>1 ,λ

>
2)> with dim(λ1) = d1 and dim(λ2) = d2,

where d1 + d2 = d. In the same way, partition vectors y,a, and matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
(11)

We now observe that we can select the permutation vector p and the corre-
sponding matrix P so that all the d1 active constraints in (10) correspond to
λ1 > 0 and all the d2 inactive constraints correspond to λ2 = 0. Without
loss of generality, we can thus assume that a and Σ are reordered via the
permutation matrix P as a pre-processing step. After this preprocessing step,
the solution y∗ of (10) with P = I will satisfy y∗1 = a1 (active constraints:
λ1 > 0) and y∗2 > a2 (inactive constraints: λ2 = 0).

We also assume that for large enough γ, the active constraint set of (10)
becomes independent of γ, see [23]. An example is given in Corollary 1 below.

3.2 Acceptance-Rejection Algorithm

First, we note that simulating Y from (9) is equivalent to simulating X ∼
N(−a(γ), Σ), conditional on X ≥ 0, and then delivering Y = X + a. Thus,
our initial goal is to simulate from the target:

π(x) = φΣ(x+ a(γ))I{x ≥ 0}/ΦΣ(a(γ))

Second, the partitioning into active and inactive constraints of (10) suggests
the following proposal density: g(x;η) = g1(x1;η)g2(x2|x1), η > 0, where

g1(x1;η) = exp(−η>x1)

d1∏
k=1

ηk, x1 ≥ 0

is a multivariate exponential proposal, and

g2(x2|x1) = φΣ(x+ a)/φΣ11
(x1 + a1)

is the multivariate normal pdf of x2, conditional on x1 (see [11, Page 146]):

X2|(X1 = x1) ∼ N(−a2 +Σ>12Σ
−1
11 (x1 + a1), Σ22 −Σ>12Σ−111 Σ12)

With this proposal, the likelihood ratio for acceptance-rejection is:

π(x)ΦΣ(a(γ))
g(x;η) = I{x ≥ 0}φΣ11

(x1+a1)

g1(x1;η)
= I{x ≥ 0} exp (ψ(x1;η)) ,

12 Zdravko Botev, Pierre L’Ecuyer

where ψ is defined as:

ψ(x1;η) := − (x1+a1)
>Σ−1

11 (x1+a1)
2 + η>x1 −

∑d1
k=1 ln(ηk)− ln |Σ11|

2 − d1 ln(2π)
2

Next, our goal is to select the value for η that will maximize the acceptance
rate of the resulting acceptance-rejection algorithm (see Algorithm 7 below).

It is straightforward to show that, with the given proposal density, the
acceptance rate for a fixed η > 0 is given by

ΦΣ(a(γ)) exp(−maxx1≥0 ψ(x1;η))

Hence, to maximize the acceptance rate, we minimize maxx1≥0 ψ(x1;η) with
respect to η. In order to compute the minimizing η, we exploit a few of the
properties of ψ.

The most important property is that ψ is concave in x1 for every η, and
that ψ is convex in η for every x1. Moreover, ψ is continuously differentiable
in η, and we have the saddle-point property (see [3]):

min
η>0

max
x1≥0

ψ(x1;η) = max
x1≥0

min
η>0

ψ(x1;η) (12)

Let ψ∗ = ψ(x∗1;η∗) denote the optimum of the minimax optimization (12)
at the solution x∗1 and η∗. The right-hand-side of (12) suggests a method for
computing η∗, namely, we can first minimize with respect to η (this gives
η = 1/x1, where the vector division is componentwise), and then maximize
over x1 ≥ 0. This yields the concave (unconstrained) optimization program
for x∗1:

x∗1 = argmax
{
− (x1+a1)

>Σ−1
11 (x1+a1)
2 +

∑d1
k=1 lnxk

}
, (13)

It then follows that η∗ = 1/x∗1. In summary, we have the following algorithm
for simulation from (9).

Algorithm 7 : X ∼ N(0, Σ), conditional on X ≥ a(γ) for large γ.

Solve (10) with P = I and compute the associated Lagrange multiplier λ. Using λ,
construct the reordering (permutation) matrix P, if needed.
a← Pa

3: Σ ← PΣP>

Let L be the lower triangular Cholesky factor of Σ22 −Σ>12Σ
−1
11 Σ12, see (11)

Solve the concave optimization problem (13) to obtain x∗1.
6: η∗1 ← 1/x∗1
ψ∗ ← ψ(x∗1;η∗)
repeat

9: repeat
Simulate U0, U1, . . . , Ud1 ∼ U(0, 1), independently.
Ek ← − ln(Uk)/η∗k for k = 1, . . . , d1

12: X1 ← (E1, . . . , Ed1)> {simulate X1 ∼ g1(x1;η∗)}
E ← − ln(U0)

until E > ψ∗ − ψ(X1;η∗)
15: Z2 ← (Z1, . . . , Zd2)>, where Z1, . . . , Zd2 ∼ N(0, 1), independently.

X2 ← LZ2 − a2 +Σ>12Σ
−1
11 (X1 + a1) {simulate X2 ∼ g2(x2|X1)}

until X2 ≥ 0
18: X ←X + a {shift to obtain draw from pdf (9)}

X ← P>X {reverse reordering, if any}
return X

Simulation from the Tail of the Univariate and Multivariate Normal Distribution 13

3.3 Asymptotic Efficiency

The acceptance rate of Algorithm 7 above is

Pg[E > ψ∗ − ψ(X1;η);X2 ≥ 0] = ΦΣ(a(γ)) exp(−ψ∗),

where Pg indicates that X was drawn from the proposal g(x;η∗). As in the
one-dimensional case, see (8), it is of interest to find out how this rate depends
on the tail parameter γ. In particular, if the acceptance rate decays to zero
rapidly as γ ↑ ∞, then Algorithm 7 will not be a viable algorithm for simulation
from the tail of the multivariate Gaussian. Fortunately, the following result
asserts that the acceptance rate does not decay to zero as we move further
and further into the tail of the Gaussian.

Theorem 1 (Asymptotically Bounded Acceptance Rate) Let y∗ be the
solution to (10) after any necessary reordering via permutation matrix P. De-
fine a∞ := limγ↑∞(a2(γ)− y∗2(γ)) with a∞ ≤ 0. Then, the acceptance rate of
the accept-reject Algorithm 7 is ultimately bounded from below:

lim inf
γ↑∞

ΦΣ(a(γ)) exp(−ψ∗(γ)) ≥ P[Y 2 ≥ a∞ |Y 1 = 0],

where the probability P[Y 2 ≥ a∞ |Y 1 = 0] is calculated under the orignal
measure (that is, Y ∼ N(0, Σ)) and, importantly, does not depend on γ.

Proof First, note that with the assumptions and notation of Section 3.1,
Hashorva and Hüsler [23] have shown the following:

ΦΣ(a(γ)) = P[Y 2≥a∞ |Y 1=0]

(2π)d1/2|Σ11|1/2
∏d1
k=1 e

>
k Σ
−1
11 a1

exp
(
−a

>
1 Σ
−1
11 a1

2

)
(1 + o(1)), γ ↑ ∞,

where ek is the unit vector with a 1 in the k-th position, and f(x) = o(g(x))
stands for limx→a f(x)/g(x) = 0.

Second, the saddle-point property (12) implies the following sequence of in-
equalities for any arbitrary η: ψ∗ ≤ ψ(x∗1;η) ≤ maxx1

ψ(x1;η). In particular,
when η = Σ−111 a1, then maxx1

ψ(x1;Σ−111 a1) = ψ(0;Σ−111 a1), and we obtain:

exp(−ψ∗) ≥ exp(−ψ(0;Σ−111 a1)) =
∏d1
k=1 e

>
k Σ
−1
11 a1

φΣ11
(a1)

Therefore, ΦΣ(a(γ)) exp(−ψ∗) ≥ P[Y 2 ≥ a∞ |Y 1 = 0](1 + o(1)) as γ ↑ ∞,
and the result of the theorem follows. �

As a special case, we consider the asymptotic result of Savage [24]:

ΦΣ(γΣc)
φΣ(γΣc) = 1

γd
∏d
k=1 ck

(1 + o(1)), c > 0, γ ↑ ∞, (14)

which is the multivariate extension of the one-dimensional Mills’ ratio [25]:
Φ(γ)
φ(γ) = 1

γ (1 + o(1)). Interestingly, the following corollary shows that when the

tail is of the Savage-Mills type, the acceptance probability not only remains
bounded away from zero, but approaches unity.

14 Zdravko Botev, Pierre L’Ecuyer

Corollary 1 (Acceptance with Probability One.) The acceptance rate
of Algorithm 7 for simulation from (9) with a = γΣc for some c > 0 satisfies:

lim
γ↑∞

ΦΣ(γΣc) exp(−ψ∗(γ)) = 1

Proof Straightforward computations show that the Lagrange multiplier of (10)
(with P = I, the identity matrix) is λ = Σ−1a = γc > 0, so that the set of
inactive constraints is empty. Then, repeating the argument in Theorem 1:

exp(−ψ∗) ≥ exp(−ψ(0, γc)) =
γd

∏d
k=1 ck

φΣ(γΣc)

(14)
= 1+o(1)

ΦΣ(γΣc)
, as desired. �

As a numerical example, we used Algorithm 7 to simulate 103 random vectors
from (9) for d = 10, a = γ1, and Σ = 9

1011
>+ 1

10 I (strong positive correlation)
for a range of large values of γ.

Table 3 below reports the acceptance rate, estimated by observing the
proportion of rejected proposals in line 17 of Algorithm 7, for a range of
different γ.

Table 3 Estimates of the acceptance probability, ΦΣ(a(γ)) exp(−ψ∗), as a function of γ.

γ 10 15 20 25 30 50 100 103

accept. rate 0.009 0.04 0.0815 0.15 0.19 0.34 0.44 0.50

The table confirms that as γ gets larger, the acceptance rate improves.

4 Conclusion

We have proposed and tested both inversion and acceptance-rejection methods
to generate a standard normal, truncated to an interval [a, b], when a � 0.
We have also proposed an acceptance-rejection method for the tail of the
multivariate normal distribution.

In the univariate setting, inversion is slower than the fastest rejection
method, as expected. However, inversion is still desirable in many situations.
Our new inversion method excels in those situations when a is large (say,
a ≥ 10). For a not too large (say, a ≤ 30), the accurate approximation of [2]
implemented in InversionSSJ works well.

When inversion is not needed, the rejection method with the Rayleigh
proposal is usually the fastest when a is large enough.

It is interesting to see that, in the univariate setting, using the Rayleigh
proposal is faster than using the truncated exponential proposal as in [6,8,21].
However, in the multivariate setting, we show that the truncated exponential
method of [6,8,21] can be extended to help simulate from the multivariate
normal tail, provided that we use an untruncated multivariate exponential
proposal (that is, X ≥ 0) combined with a Gaussian mean-shift (that is,
Y = X + a).

Simulation from the Tail of the Univariate and Multivariate Normal Distribution 15

References

1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, New
York, 1970.

2. J. M. Blair, C. A. Edwards, and J. H. Johnson. Rational Chebyshev approximations
for the inverse of the error function. Mathematics of Computation, 30:827–830, 1976.

3. Z. I. Botev. The normal law under linear restrictions: simulation and estimation via
minimax tilting. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 2016. doi: 10.1111/rssb.12162.

4. Z. I. Botev and P. L’Ecuyer. Efficient estimation and simulation of the truncated mul-
tivariate Student-t distribution. In Proceedings of the 2015 Winter Simulation Confer-
ence, pages 380–391. IEEE Press, 2015.

5. Z. I. Botev, M. Mandjes, and A. Ridder. Tail distribution of the maximum of correlated
Gaussian random variables. In Proceedings of the 2015 Winter Simulation Conference,
pages 633–642. IEEE Press, 2015.

6. N. Chopin. Fast simulation of truncated Gaussian distributions. Statistics and Com-
puting, 21(2):275–288, 2011.

7. L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York,
NY, 1986.

8. J. Geweke. Efficient simulation of the multivariate normal and Student-t distributions
subject to linear constraints and the evaluation of constraint probabilities. In Computing
science and statistics: Proceedings of the 23rd symposium on the interface, pages 571–
578, Fairfax, Virginia, 1991.

9. C. Hans. Model uncertainty and variable selection in Bayesian lasso regression. Statistics
and Computing, 20(2):221–229, 2010.

10. W. Hörmann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Variate
Generation. Springer-Verlag, Berlin, 2004.

11. D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods. John
Wiley and Sons, New York, 2011.

12. P. L’Ecuyer. Variance reduction’s greatest hits. In Proceedings of the 2007 European
Simulation and Modeling Conference, pages 5–12, Ghent, Belgium, 2007. EUROSIS.

13. P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and
Stochastics, 13(3):307–349, 2009.

14. P. L’Ecuyer. Random number generation with multiple streams for sequential and
parallel computers. In Proceedings of the 2015 Winter Simulation Conference, pages
31–44. IEEE Press, 2015.

15. P. L’Ecuyer. SSJ: Stochastic simulation in Java, software library, 2016. http://simul.
iro.umontreal.ca/ssj/.

16. P. L’Ecuyer and G. Perron. On the convergence rates of IPA and FDC derivative
estimators. Operations Research, 42(4):643–656, 1994.

17. J. Leydold. UNU.RAN—Universal Non-Uniform RANdom number generators, 2009.
Available at http://statmath.wu.ac.at/unuran/.

18. G. Marsaglia. Generating a variable from the tail of the normal distribution. Techno-
metrics, 6(1):101–102, 1964.

19. G. Marsaglia and T. A. Bray. A convenient method for generating normal variables.
SIAM Review, 6:260–264, 1964.

20. G. Marsaglia, A. Zaman, and J. C. W. Marsaglia. Rapid evaluation of the inverse
normal distribution function. Statistics and Probability Letters, 19:259–266, 1994.

21. C. P. Robert. Simulation of truncated normal variables. Statistics and computing,
5(2):121–125, 1995.

22. D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor. Gaussian random number
generators. ACM Computing Surveys, 39(4):Article 11, Nov. 2007.

23. E. Hashorva and J. Hüsler. On multivariate Gaussian tails. Annals of the Institute of
Statistical Mathematics, 55(3):507–522, 2003

24. R. I. Savage. Mills’ ratio for multivariate normal distributions. J. Res. Nat. Bur.
Standards Sect. B, 66:93–96,1962

25. J. P. Mills. Table of the ratio: area to bounding ordinate, for any portion of normal
curve. Biometrika, pages, 395–400, 1926

