Confidence Intervals for Randomized Quasi-Monte Carlo Estimators

1

Pierre L'Ecuyer, Marvin K. Nakayama, Art B. Owen, Bruno Tuffin

EURO 2024, Copenhagen

Monte Carlo (MC) integration

A simulation model produces a random output X . We want to estimate

CarIO (WIC) Integration
ution model produces a random output X. We want to estimate

$$
\mu = \mathbb{E}[X] = \mathbb{E}[f(\mathbf{U})] = \int_{(0,1)^s} f(\mathbf{u}) d\mathbf{u} = \int_0^1 \cdots \int_0^1 f(u_1, \ldots, u_s) du_1 \cdots du_s
$$

 $: (0,1)^s \to \mathbb{R}$ and $\mathbf{U} = (U_1, \ldots, U_s)$ is a uniform r.v. over $(0,1)^s$.
Monte Carlo method:
enerate *n* independent copies of $\mathbf{U} \sim \mathcal{U}(0,1)^s$, say $\mathbf{U}_1, \ldots, \mathbf{U}_n$;
estimate μ by $\hat{\mu}_n = (1/n) \sum_{i=1}^n f(\mathbf{U}_i)$.

where $f:(0,1)^s \to \mathbb{R}$ and $\bm{U}=(U_1,\ldots,U_s)$ is a uniform r.v. over $(0,1)^s.$

(Crude) Monte Carlo method:

- 1. Generate *n* independent copies of $U \sim \mathcal{U}(0, 1)^s$, say $U_1, \ldots, U_n;$
- 2. Estimate μ by $\hat{\mu}_n = (1/n) \sum_{i=1}^n f(\bm{U}_i)$.

Monte Carlo (MC) integration

A simulation model produces a random output X . We want to estimate

$$
\mu = \mathbb{E}[X] = \mathbb{E}[f(\boldsymbol{U})] = \int_{(0,1)^s} f(\boldsymbol{u}) d\boldsymbol{u} = \int_0^1 \cdots \int_0^1 f(u_1,\ldots,u_s) du_1 \cdots du_s
$$

where $f:(0,1)^s \to \mathbb{R}$ and $\bm{U}=(U_1,\ldots,U_s)$ is a uniform r.v. over $(0,1)^s.$

(Crude) Monte Carlo method:

- 1. Generate *n* independent copies of $U \sim \mathcal{U}(0, 1)^s$, say $U_1, \ldots, U_n;$
- 2. Estimate μ by $\hat{\mu}_n = (1/n) \sum_{i=1}^n f(\bm{U}_i)$.

Almost sure convergence as $n \to \infty$ (strong law of large numbers). Can use central limit theorem to compute a confidence interval on μ :

Integration
\nduces a random output X. We want to estim
\n
$$
f(\boldsymbol{U})
$$
 = $\int_{(0,1)^s} f(\boldsymbol{u}) d\boldsymbol{u} = \int_0^1 \cdots \int_0^1 f(u_1, \ldots$
\n $\int_{0}^1 f(u_1, \ldots, u_n) d\boldsymbol{u} = (U_1, \ldots, U_s)$ is a uniform r.v. over (0,
\n**method:**
\n $\int_{0}^1 f(u_1, \ldots, u_n) d\boldsymbol{u} = (1/n) \sum_{i=1}^n f(u_i).$
\ne as $n \to \infty$ (strong law of large numbers).
\n $\int_{0}^1 \left[\mu \in \left(\hat{\mu}_n - \frac{c_{\alpha} S_n}{\sqrt{n}}, \hat{\mu}_n + \frac{c_{\alpha} S_n}{\sqrt{n}} \right) \right] \approx 1 - \alpha,$
\n $\int_{0}^1 \left[\mu \in \left(\hat{\mu}_n - \frac{c_{\alpha} S_n}{\sqrt{n}}, \hat{\mu}_n + \frac{c_{\alpha} S_n}{\sqrt{n}} \right) \right] \approx 1 - \alpha,$
\n $\int_{0}^1 \left[\mu \in \left(\hat{\mu}_n - \frac{c_{\alpha} S_n}{\sqrt{n}}, \hat{\mu}_n + \frac{c_{\alpha} S_n}{\sqrt{n}} \right) \right] \approx 1 - \alpha,$
\n $\int_{0}^1 \left[\mu \in \left(\hat{\mu}_n - \frac{c_{\alpha} S_n}{\sqrt{n}}, \hat{\mu}_n + \frac{c_{\alpha} S_n}{\sqrt{n}} \right) \right] \approx 1 - \alpha,$

where S_n^2 is any consistent estimator of $\sigma^2 = \text{Var}[f(\bm{U})]$. Converges at slow rate: $\mathcal{O}(n^{-1/2})$.

Quasi-Monte Carlo (QMC)

Replace the independent random points U_i by a set of **deterministic** points $P_n = \{u_0, \ldots, u_{n-1}\}\$ that cover $(0,1)^s$ more evenly . Approximate

random points
$$
U_i
$$
 by a set of **determinist**

\nat cover $(0,1)^s$ more evenly. Approximate

\n
$$
\mu = \int_{(0,1)^s} f(u) \, \mathrm{d}u \quad \text{by} \quad \bar{\mu}_n = \frac{1}{n} \sum_{i=0}^{n-1} f(u_i).
$$

Quasi-Monte Carlo (QMC)

Replace the independent random points U_i by a set of **deterministic** points $P_n = \{u_0, \ldots, u_{n-1}\}\$ that cover $(0,1)^s$ more evenly . Approximate

$$
\mu = \int_{(0,1)^s} f(\boldsymbol{u}) \mathrm{d} \boldsymbol{u} \quad \text{by} \quad \bar{\mu}_n = \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{u}_i).
$$

For various spaces H of functions f, one has

$$
|E_n| := |\bar{\mu}_n - \mu| \le \mathcal{D}_n(P_n) \cdot \mathcal{V}(f) \qquad \text{(worst-case error bound)}
$$

for all $f \in \mathcal{H}$, where $V(f)$ is the variation of f in H and $\mathcal{D}(P_n)$ measures the discrepancy between the empirical distribution of P_n and the uniform distribution over $(0,1)^s$.

Notion points U_i by a set of **determinist**
 \overline{D}_i over $(0, 1)^s$ more evenly. Approximate
 $= \int_{(0,1)^s} f(u) du$ by $\overline{\mu}_n = \frac{1}{n} \sum_{i=0}^{n-1} f(u_i)$

ctions f , one has
 $-\mu \leq \mathcal{D}_n(P_n) \cdot \mathcal{V}(f)$ (worst-case express Both depend on H. Typically, we know how to construct P_n such that ${\mathcal D}_n(P_n) = {\mathcal O}(n^{-\alpha}(\log n)^{s-1})$ for some $\alpha > 1/2$ (low discrepancy points). When $V(f) < \infty$, $|E_n|$ also converges at this rate, which beats the MC rate.

Difficulty: very hard to estimate the error E_n in practice.

Randomized quasi-Monte Carlo (RQMC)

We randomize P_n into $\tilde{P}_n = \{ \textbf{\textit{U}}_1, \dots, \textbf{\textit{U}}_n \} \subset (0,1)^s$ such that

- (1) the uniformity of P_n as a whole is preserved;
- (2) each point \boldsymbol{U}_i has the uniform distribution over $(0,1)^s.$

Unbiased RQMC estimator of
$$
\mu
$$
: $\hat{\mu}_{n,\text{rqmc}} = \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{U}_i)$.

Proof Example 18.10 (**RQIVIC**)

Effect: $\{U_1, \ldots, U_n\} \subset (0, 1)^s$ such that

as a whole is preserved;

e uniform distribution over $(0, 1)^s$.

of μ : $\hat{\mu}_{n, \text{rqmc}} = \frac{1}{n} \sum_{i=0}^{n-1} f(U_i)$.

e *R* independent replic **Variance estimation:** Make R independent replicates of the RQMC estimator $\hat{\mu}_{n,\text{rame}}$, then estimate μ and $\text{Var}[\hat{\mu}_{n,\text{rame}}]$ by their sample mean and sample variance. Variance of sample average is (approximately) $\mathcal{O}(R^{-1}n^{-2\alpha})$. For a fixed computing budget Rn, One prefers a small R (e.g., $R = 10$) and large n.

How do we compute a confidence interval on μ ?

The CLT applies for $R \to \infty$, but we want a small R. For R fixed and $n \to \infty$, the sample average is often far from normally distributed. Then using the bootstrap appears as an appropriate approach. We want to test that!

Example: Lattice rule

Select $\boldsymbol{a} = (a_1, \ldots, a_s) \in \{1, \cdots, n-1\}^s$, put $\boldsymbol{\nu}_1 = \boldsymbol{a}/n$ and define $P_n = \{u_i = i v_1 \text{ mod } 1, i = 0, \ldots, n-1\}$

Example: $s = 2$, $n = 101$, $v_1 = (1, 12)/n$.

Example: Lattice rule

Select $\boldsymbol{a} = (a_1, \ldots, a_s) \in \{1, \cdots, n-1\}^s$, put $\boldsymbol{\nu}_1 = \boldsymbol{a}/n$ and define $P_n = \{u_i = i v_1 \text{ mod } 1, i = 0, \ldots, n-1\}$

Example: $s = 2$, $n = 101$, $v_1 = (1, 12)/n$.

Another example: $s = 2$, $n = 1021$, $v_1 = (1, 90)/n$.

$$
P_n = \{u_i = iv_1 \mod 1 : i = 0, \ldots, n-1\}.
$$

RQMC Point Sets Considered Here

- ▶ Lat-RS: Lattice rule of rank 1 with random shift (RS).
	- ▶ The *i*th point is $u_i = (ia \mod n)/n$ with $a = (a_1, \ldots, a_s)$ for selected $a_i \in \{1, \ldots, n-1\}$;
	- ▶ RS: Uniform random point $\mathbf{U} \in (0,1)^s$ and add it to each point \mathbf{u}_i .
- \triangleright Lat-RSB: Lattice rule $+$ RS $+$ baker
	- ▶ Add a baker's transformation after RS: replace each $u_{i,j}$ by $1 2|u_{i,j} 1/2|$;
	- ▶ Brings continuity over the s-dimensional unit torus: may improve the convergence rate.
- ▶ Sob-DS: Digital net in base 2 with digital shift (DS)
- **CONSIDETED THETE**

In a with random shift (RS).

(*ia* mod *n*)/*n* with $a = (a_1, ..., a_s)$ for selected

point $U \in (0, 1)^s$ and add it to each point u_i .

RS + baker

rmation after RS: replace each $u_{i,j}$ by $1 2|u_{i,j}$
 ▶ Coord. *j* of point $i = \sum_{\ell=0}^{k-1} a_{i,\ell} 2^{\ell}$ is $u_{i,j} = \sum_{\ell=1}^{w} u_{i,j,\ell} 2^{-\ell}$ where $(u_{i,j,1},\ldots,u_{i,j,w})^t=\bm{\mathcal{C}}_j\cdot(a_{i,0},\ldots,a_{i,k-1})^t$ mod 2 and the $\bm{\mathcal{C}}_j$ are binary generating matrices.
	- ▶ DS: Make bitwise xor of random vector \boldsymbol{U} : $U(0, 1)^s$ with each point \boldsymbol{u}_i .
- \triangleright Sob-LMS: Digital net in base 2 with left matrix scramble (LMS) $+$ DS
	- **•** Pre-multiply each C_i by a random lower triangular $w \times w$ matrix L_i with 1's on the diagonal and i.i.d. binary entries below the diagonal. Also add DS.
- ▶ Sob-NUS: Digital net in base 2 with nested uniform scramble (NUS)
	- ▶ Performs more involved nested uniform permutations of the digits (bits).
	- ▶ Obeys a CLT when $n \to \infty$, under some conditions.

Three types of confidence intervals (CI)

IGENCE INTERVAIS (CI)
 IAL. Assume that the RQMC estimator and mean \bar{y}_R and variance S_R^2 of its R reflat $\sqrt{R}(\bar{y}_R - \mu)/S_R \sim$ Student with R **Standard Student-t interval.** Assume that the RQMC estimator $\hat{\mu}_{n,\text{rame}}$ has a normal distribution, use the empirical mean \bar{y}_R and variance S^2_R of its R replicates y_1,\ldots,y_R to c distribution, use the empirical mean y_R and variance s_R or its κ repircates y_1,\ldots,y_R to compute a CI by assuming that $\sqrt{R}(\bar{y}_R-\mu)/S_R\sim$ Student with $R-1$ degrees of freedom.

Three types of confidence intervals (CI)

Standard Student-t interval. Assume that the RQMC estimator $\hat{\mu}_{n,\text{rqmc}}$ has a normal distribution, use the empirical mean \bar{y}_R and variance S^2_R of its R replicates y_1,\ldots,y_R to c distribution, use the empirical mean y_R and variance s_R or its κ repircates y_1,\ldots,y_R to compute a CI by assuming that $\sqrt{R}(\bar{y}_R-\mu)/S_R\sim$ Student with $R-1$ degrees of freedom.

Draft **Percentile (basic) bootstrap.** If we knew the exact distribution of $\bar{y}_R - \mu$, we could compute an exact 95% CI just by using the 2.5% and 97.5% quantiles of that distribution. We don't, but we can approximate it by resampling B new approximate realizations of \bar{y}_R , each one by resampling R observations with replacement from the data y_1, \ldots, y_R . If $\bar{y}^{*(1)} \leq \cdots \leq \bar{y}^{*(B)}$ are the sorted values and $B=1000$, the 95% CI has the form $(\bar{y}^{*(25)}, \bar{y}^{*(975)})$.

Three types of confidence intervals (CI)

Standard Student-t interval. Assume that the RQMC estimator $\hat{\mu}_{n,\text{rqmc}}$ has a normal distribution, use the empirical mean \bar{y}_R and variance S^2_R of its R replicates y_1,\ldots,y_R to c distribution, use the empirical mean y_R and variance s_R or its κ repircates y_1,\ldots,y_R to compute a CI by assuming that $\sqrt{R}(\bar{y}_R-\mu)/S_R\sim$ Student with $R-1$ degrees of freedom.

Draft **Percentile (basic) bootstrap.** If we knew the exact distribution of $\bar{y}_R - \mu$, we could compute an exact 95% CI just by using the 2.5% and 97.5% quantiles of that distribution. We don't, but we can approximate it by resampling B new approximate realizations of \bar{v}_R , each one by resampling R observations with replacement from the data y_1, \ldots, y_R . If $\bar{y}^{*(1)} \leq \cdots \leq \bar{y}^{*(B)}$ are the sorted values and $B=1000$, the 95% CI has the form $(\bar{y}^{*(25)}, \bar{y}^{*(975)})$.

Bootstrap t . Similar, but we approximate the distribution of $\sqrt{R}(\bar{y}_R - \mu)/S_R$ instead, by **BOOtstrap** t. Similar, but we approximate the distribution of $\sqrt{\kappa} (y_R - \mu)/s_R$ instead, by
resampling B times R observations, computing the B realizations of $\sqrt{R}(\bar{y}^*_R - \bar{y}_R)/S^*_R$, and the appropriate quantiles t_{L}^{*} and t_{U}^{*} of their distribution. The CI is

$$
(\bar{y}_R-S_Rt_U^*/\sqrt{R}, \bar{y}_R-S_Rt_L^*/\sqrt{R})
$$
.

Bootstrap properties (Hall 1988)

With skewness γ and kurtosis coefficient κ , the coverage error is:

Normal theory:
$$
(1/R)\varphi(z^{1-\alpha/2})[0.14\kappa - 2.12\gamma^2 - 3.35] + \mathcal{O}(1/R^2)
$$
,
\nPercentile: $(1/R)\varphi(z^{1-\alpha/2})[-0.72\kappa - 0.37\gamma^2 - 3.35] + \mathcal{O}(1/R^2)$,
\nBoostrap *t*: $(1/R)\varphi(z^{1-\alpha/2})[-2.84\kappa + 4.25\gamma^2] + \mathcal{O}(1/R^2)$.

S (**Hall 1988)**

sis coefficient κ , the coverage error is:
 $(1/R)\varphi(z^{1-\alpha/2})$ $[0.14\kappa - 2.12\gamma^2 - 3$
 $(1/R)\varphi(z^{1-\alpha/2})$ $[-0.72\kappa - 0.37\gamma^2 - 3$
 $(1/R)\varphi(z^{1-\alpha/2})$ $[-2.84\kappa + 4.25\gamma^2$

vantage of missing the -3.35 con The bootstrap t has the advantage of missing the -3.35 constant. It has a large positive coefficient for γ^2 (extra coverage for skewed data) where the others have negative coefficients. The asymptotics predict that it will undercover when κ is large and $\gamma = 0$. For R different values y_r , $\mathbb{P}(S_R=0)=R^{1-R}.$

For $R=5$, this gives $\mathbb{P}(S_R=0)=1/5^4=1/625$, which is not negligible.

Selected functions and set of experiments

- ▶ Five types of RQMC point sets: Lat-RS, Lat-RSB, Sob-DS, Sob-LMS, Sob-NUS.
- Each with $n = 2^k$ points for $k = 6, 8, 10, 12, 14$, and in $s = 4, 8, 16, 32$ dimensions.
- Bootstrap with $B = 1000$.
- \blacktriangleright Selected functions:
	- 1. SumUeU (smooth, additive): $f(\boldsymbol{u}) = -s + \sum_{j=1}^{s} u_j \exp(u_j)$.
	- 2. MC2 (smooth): $f(\mathbf{u}) = -1 + (s 1/2)^s \prod_{j=1}^s (x_j 1/2)$.
	- 3. PieceLinGauss (piecewise linear, continuous, Gaussian inputs):

 $f(\textbf{\textit{u}}) = \max\left(s^{-1/2}\sum_{j=1}^s \Phi^{-1}(u_j) - \tau, 0\right) - \varphi(\tau) + \tau \Phi(-\tau).$

- 4. IndSumNormal (discontinuous, infinite variation): $f(\mathbf{u}) = -\Phi(1) + \mathbb{I}\{s^{-1/2}\sum_{j=1}^s \Phi^{-1}(u_j) \geq 1\},\$
- 5. SmoothGaus (smooth, bounded, monotone): √ $f(\mathbf{u}) = -\Phi(1/\sqrt{2}) + \Phi(1 + s^{-1/2} \sum_{j=1}^{s} \Phi^{-1}(u_j)).$
- **Ind Set or experiments**

bint sets: Lat-RS, Lat-RSB, Sob-DS, Sc

ts for $k = 6, 8, 10, 12, 14$, and in $s = 4, 8$

100.

additive): $f(u) = -s + \sum_{j=1}^{s} u_j \exp(u_j)$.
 $y) = -1 + (s 1/2)^s \prod_{j=1}^{s} (x_j 1/2)$.

ewise linear, continuo 6. RidgeJohnsonSU (heavy-tailed): $f(\bm{u)} = -\eta + F^{-1}(s^{-1/2} \sum_{j=1}^s u_j)$ where F is the CDF of the Johnson's SU distribution with skewness −5.66 and kurtosis 96.8 for any s.

Results

▶ Experiments

- ▶ 2400 tasks: 6 integrands, 5 RQMC methods, 4 dimensions, 5 RQMC sample sizes and 4 values of R (5, 10, 20, 30).
- ands, 5 RQMC methods, 4 dimensions, 5 R
20, 30).

Dromputed 1000 independent Cls at 95%, and

coverage (less than 927/1000 of the interv

is at least 94%, this happens with probabil

ood failed for 1698 (70.75%) of those \triangleright For each case, we computed 1000 independent CIs at 95%, and declared a "failure" if there was less than 92.7% coverage (less than 927/1000 of the intervals covered the true value). If the true coverage is at least 94%, this happens with probability less than 4%.

▶ Results

- ▶ The percentile method failed for 1698 (70.75%) of those 2400 tasks
	- ▶ Not well suited to very small sample sizes
	- ▶ Not well regarded for setting confidence intervals for the mean.
- \blacktriangleright The bootstrap t method failed 81 times
	- ▶ 74 for Sob-LMS on SumUeU (44 times) or MC2 (30 times); spiky histograms, see next slide
	- Interval of infinite length if $S_R = 0$: 21 times for IndSumNormal with $R = 5$. Discrete distribution, fewer than 2^k different values.
- \blacktriangleright The plain Student t confidence interval method failed only 3 times.
	- ▶ Fails only when $R = 5$ (bootstrap t has coverage higher than 95% then)
	- ▶ Coverage higher than 97% 81 times (SumUeU and MC2).

Histograms (mostly unusual ones)

- RidgeJohnsonSU: negatively skewed (other RQMC methods too)
- ▶ SumUeU (and MC2): "spike plus outliers"

 \blacktriangleright PieceLinGauss: bimodal (often for LAT+baker) IndSumNormal: Gaussian plus a spike near one value

- ▶ SmoothGauss: roughly Gaussian, as most of those in the data set
- MC2 Sob-NUS: untypical for NUS (more frequent for LMS).

CI Coverage and width, versus skewness and kurtosis, Student t intervals, $R = 10$

- - Some examples with high kurtosis, none with extreme skewness
	- Standard CI known to have robust coverage in response to kurtosis but vulnerable to skewness.
	- Kurtosis increases nominal coverage for the standard t intervals
	- CI length decreasing with extreme kurtosis (Sob-LMS with SumUeU and MC2)
	- Small R : rare outliers, CIs are extremely short and cover the true mean often enough.

Conclusions

- ▶ Surprise: Two-sided CIs using Student-t distribution work well for RQMC.
- \triangleright We were expecting the bootstrap t to perform better, but it does not.
- Bootstrap t not working well for discrete random variables (SumNormalInd).
- s using Student-t distribution work well
bootstrap t to perform better, but it do
g well for discrete random variables (Su
wn to have better coverage for one-side
 $\mathcal{O}(1/n)$ for other methods.
Aways look at the *R* indiv ▶ The bootstrap t is known to have better coverage for one-sided intervals, not considered The bootstrap t is known to have better coverage
here. It is $O(1/\sqrt{n})$ vs $O(1/n)$ for other methods.

One last recommendation: Aways look at the R individual averages that you obtained. They contain all the information that can be used by any method!

Thank you!

Some references and the state of the sta

- ▶ P. L'Ecuyer, M. Nakayama, A. B. Owen, and B. Tuffin. Confidence Intervals for Randomized Quasi-Monte Carlo Estimators, Proceedings of the 2023 Winter Simulation Conference, IEEE Press, pages 445–456, 2023.
- ▶ Monte Carlo and Quasi-Monte Carlo Methods 2022, 2020, 2018, ... Springer-Verlag.
- ▶ J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, 2010.
- ▶ P. L'Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics, 13(3):307–349, 2009.
- ▶ P. L'Ecuyer. Randomized quasi-Monte Carlo: An introduction for practitioners. In P. W. Glynn and A. B. Owen, editors, Monte Carlo and Quasi-Monte Carlo Methods 2016, 2017.
- Proceedings of the 2023 Winter Simul
Carlo Methods 2022, 2020, 2018, ... S
Digital Nets and Sequences: Discrepa
University Press, 2010.
Io methods with applications in finance
si-Monte Carlo: An introduction for pra
arlo a ▶ P. L'Ecuyer, P. Marion, M. Godin, and F. Puchhammer. A Tool for Custom Construction of QMC and RQMC Point Sets. Monte Carlo and Quasi-Monte Carlo Methods 2020, A. Keller, Ed., Springer-Verlag, 51–70, 2022.
- ▶ A. B. Owen. Practical Quasi-Monte Carlo. Draft available at <https://artowen.su.domains/mc/practicalqmc.pdf>, 2023.
- ▶ H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1992.