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Monte Carlo (MC) integration

A simulation model produces a random output X. We want to estimate
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where 7 :(0,1)°* - R and U = (Us, ..., Us) is a uniform r.v. over (0,1)".

(Crude) Monte Carlo method:
1. Generate n independent copies of U ~ U£(0,1)°, say U;,..., Up;
2. Estimate p by /i, = (1/n) Y1, f(U)).
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where 7 :(0,1)°* - R and U = (Us, ..., Us) is a uniform r.v. over (0,1)".

(Crude) Monte Carlo method:
1. Generate n independent copies of U ~ U£(0,1)°, say U;,..., Up;
2. Estimate p by /i, = (1/n) Y1, f(U)).

Almost sure convergence as n — oo (strong law of large numbers).
Can use central limit theorem to compute a confidence interval on u:
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where 52 is any consistent estimator of o> = Var[f(U)]. Converges at slow rate: O(n~1/?).




Quasi-Monte Carlo (QMC)

Replace the independent random points U; by a set of deterministic points
u,_1} that cover (0,1)° more evenly . Approximate
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Quasi-Monte Carlo (QMC)

Replace the independent random points U; by a set of deterministic points
P, ={uo,...,u, 1} that cover (0,1)° more evenly . Approximate

)

_ 1
p= /(071)5 fludu by i, =~ Z fu;).
For various spaces # of functions f, one has
|En| := |tn — p| < Dp(Pn) - V(F)
for all f € H, where V(f) is the variation of f in H and D(P,) measures the discrepancy

between the empirical distribution of P, and the uniform distribution over (0, 1)°.

Both depend on H. Typically, we know how to construct P, such that
Dy(Py) = O(n~%(log n)*~1) for some o > 1/2 (low discrepancy points).
When V(f) < oo, |E,| also converges at this rate, which beats the MC rate.

Difficulty: very hard to estimate the error E, in practice.



Randomized quasi-Monte Carlo (RQMC)

We randomize P, into P, = {Uy, ..., U,} C (0,1)° such that
(1) the uniformity of P, as a whole is preserved,;
(2) each point U; has the uniform distribution over (0, 1)°.
1 n—1
Unbiased RQMC estimator of p: [in rqme = - Z f(U;).
i=0
Variance estimation: Make R independent replicates of the RQMC estimator fi rqme, then
estimate 1 and Var[fin rqme] by their sample mean and sample variance.
Variance of sample average is (approximately) O(R~1n=2%) .
For a fixed computing budget Rn, One prefers a small R (e.g., R = 10) and large n.

How do we compute a confidence interval on u?

The CLT applies for R — oo, but we want a small R.

For R fixed and n — oo, the sample average is often far from normally distributed.
Then using the bootstrap appears as an appropriate approach. We want to test that!



Example: Lattice rule
.,as) €4{1,--- ,n—1}°, put vy = a/n and define

Select a = (ay, ..
P,={ui=ivymodl,i=0,...,n—1}

Example: s =2, n =101, vy = (1,12)/n.
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Another example: s =2, n=1021, v; = (1,90)/n.

P,={ui=ivymod1l:i=0,...,n—1}.




Randomly-Shifted Lattice

Example: lattice with s =2, n =101, v; = (1,12)/101.




Randomly-Shifted Lattice

Example: lattice with s =2, n =101, v; = (1,12)/101.
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Randomly-Shifted Lattice

Example: lattice with s =2, n =101, vy = (1,12)/101.




R
andomly-Shifted Lattice
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RQMC Point Sets Considered Here

> Lat-RS: Lattice rule of rank 1 with random shift (RS).

» The ith point is u; = (ia mod n)/n with a = (a1, ..., as) for selected a; € {1,...,n—1};
» RS: Uniform random point U € (0,1)° and add it to each point u;.

» Lat-RSB: Lattice rule + RS + baker

> Add a baker's transformation after RS: replace each u;; by 1 — 2|u;; — 1/2];
> Brings continuity over the s-dimensional unit torus: may improve the convergence rate.

> Sob-DS: Digital net in base 2 with digital shift (DS)

> Coord. j of point i = S 6"+ ;2% is ui; = S04, ui .2~ where
(Uijay---suijw) = Ci-(aio,-..,ak1)" mod 2 and the C; are binary generating matrices.
> DS: Make bitwise xor of random vector U : U(0,1)° with each point u;.

> Sob-LMS: Digital net in base 2 with left matrix scramble (LMS) + DS

» Pre-multiply each C; by a random lower triangular w x w matrix L; with 1's on the diagonal and
i.i.d. binary entries below the diagonal. Also add DS.

> Sob-NUS: Digital net in base 2 with nested uniform scramble (NUS)

» Performs more involved nested uniform permutations of the digits (bits).
» Obeys a CLT when n — oo, under some conditions.



Three types of confidence intervals (Cl)

Standard Student-t interval. Assume that the RQMC estimator fi, yqmc has a normal
distribution, use the empirical mean yr and variance SIL% of its R replicates y1,...,yr to
compute a Cl by assuming that v/R(7r — 11)/Sgr ~ Student with R — 1 degrees of freedom.



Three types of confidence intervals (Cl)

Standard Student-t interval. Assume that the RQMC estimator fi, yqmc has a normal
distribution, use the empirical mean yr and variance Sf—\, of its R replicates y1,...,yr to

compute a Cl by assuming that v/R(7r — 11)/Sgr ~ Student with R — 1 degrees of freedom.

Percentile (basic) bootstrap. If we knew the exact distribution of ygr — p, we could
compute an exact 95% Cl just by using the 2.5% and 97.5% quantiles of that distribution.
We don't, but we can approximate it by resampling B new approximate realizations of yg,
each one by resampling R observations with replacement from the data y1,..., yr.

If )7*(1) << )7*(3) are the sorted values and B = 1000, the 95% Cl has the form
(}—,*(25)7 )7*(975)).



Three types of confidence intervals (Cl)

Standard Student-t interval. Assume that the RQMC estimator fi, yqmc has a normal
distribution, use the empirical mean yr and variance 5,?-\, of its R replicates y1,...,yr to

compute a Cl by assuming that v/R(7r — 11)/Sgr ~ Student with R — 1 degrees of freedom.

Percentile (basic) bootstrap. If we knew the exact distribution of ygr — p, we could
compute an exact 95% Cl just by using the 2.5% and 97.5% quantiles of that distribution.
We don't, but we can approximate it by resampling B new approximate realizations of yg,
each one by resampling R observations with replacement from the data y1,..., yr.

If )7*(1) << )7*(3) are the sorted values and B = 1000, the 95% Cl has the form
(}—/*(25)7 )7*(975)).

Bootstrap t. Similar, but we approximate the distribution of v'R(yg — jt)/Sk instead, by
resampling B times R observations, computing the B realizations of V/R(7% — 7r)/S5. and
the appropriate quantiles t; and t; of their distribution. The Cl is

(7% — Skty/VR. 7 — Sati/VR).
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Bootstrap properties (Hall 1988)

With skewness v and kurtosis coefficient «, the coverage error is:

Normal theory: (1/R)g0(zlfc“/2)[ 0.14x — 2.12+2% — 3.35] + O(1/R?),
Percentile:  (1/R)p(2'/2)[~0.72k — 0.379 — 3.35] + O(1/R?),
Bootstrap t: (1/R)p(z*~2/?) [—2.84k + 4.2597 | +0(1/R?).

The bootstrap t has the advantage of missing the —3.35 constant. It has a large positive
coefficient for v2 (extra coverage for skewed data) where the others have negative
coefficients. The asymptotics predict that it will undercover when & is large and v = 0.
For R different values y,, P(Sg = 0) = R1=R.

For R = 5, this gives P(Sg = 0) = 1/5% = 1/625, which is not negligible.



Selected functions and set of experiments

» Five types of RQMC point sets: Lat-RS, Lat-RSB, Sob-DS, Sob-LMS, Sob-NUS.
» Each with n = 2% points for k = 6,8,10,12,14, and in s = 4, 8,16, 32 dimensions.
» Bootstrap with B = 1000.

> Selected functions:

1.
2.
3.

SumUeU (smooth, additive): f(u) = —s+ Y77 ; ujexp(u;).

MC2 (smooth): f(u) = —1+ (s —1/2)°[[7_ (> —1/2).

PieceLinGauss (piecewise linear, continuous, Gaussian inputs):

f(u) = max (5’1/2 Do O ) — 7 O) — (1) + 7P(—7).

IndSumNormal (discontinuous, infinite variation):

Flu) = —®(1) + H{s™ V2377 &7 () > 1},

SmoothGaus (smooth, bounded, monotone):

flu) = —O(1/vV2) + (14571237 07 (wy)).

RidgeJohnsonSU (heavy-tailed): f(u) = —n+ F (s /> 37" u;) where F is the CDF of
the Johnson's SU distribution with skewness —5.66 and kurtosis 96.8 for any s.

11
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Results
» Experiments
P 2400 tasks: 6 integrands, 5 RQMC methods, 4 dimensions, 5 RQMC sample sizes and 4
values of R (5, 10, 20, 30).
» For each case, we computed 1000 independent Cls at 95%, and declared a “failure” if there
was less than 92.7% coverage (less than 927/1000 of the intervals covered the true value).
If the true coverage is at least 94%, this happens with probability less than 4%.
» Results
» The percentile method failed for 1698 (70.75%) of those 2400 tasks

»> Not well suited to very small sample sizes
» Not well regarded for setting confidence intervals for the mean.
» The bootstrap t method failed 81 times
» 74 for Sob-LMS on SumUeU (44 times) or MC2 (30 times); spiky histograms, see next slide
» Interval of infinite length if Sg = 0: 21 times for IndSumNormal with R = 5. Discrete
distribution, fewer than 2% different values.
» The plain Student t confidence interval method failed only 3 times.
> Fails only when R =5 (bootstrap t has coverage higher than 95% then)
> Coverage higher than 97% 81 times (SumUeU and MC2).



Histograms (mostly unusual ones)
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Cl Coverage and width, versus skewness and kurtosis, Student t intervals, R = 10

Coverage and length: standard t intervals and R = 10
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Absolute Skewness
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Absolute Skewness

Some examples with high kurtosis, none
with extreme skewness

Standard Cl known to have robust coverage
in response to kurtosis but vulnerable to
skewness.

Kurtosis increases nominal coverage for the
standard t intervals

Cl length decreasing with extreme kurtosis
(Sob-LMS with SumUeU and MC2)

Small R: rare outliers, Cls are extremely
short and cover the true mean often
enough.
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Conclusions

» Surprise: Two-sided Cls using Student-t distribution work well for RQMC.
> We were expecting the bootstrap t to perform better, but it does not.
» Bootstrap t not working well for discrete random variables (SumNormallnd).

> The bootstrap t is known to have better coverage for one-sided intervals, not considered
here. It is O(1/+/n) vs O(1/n) for other methods.

One last recommendation: Aways look at the R individual averages that you obtained. They
contain all the information that can be used by any method!

Thank you!
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