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Monte Carlo (MC) integration
A simulation model produces a random output X . We want to estimate

µ = E[X ] = E[f (U)] =

∫
(0,1)s

f (u) du =

∫ 1

0
· · ·

∫ 1

0
f (u1, . . . , us) du1 · · · dus

where f : (0, 1)s → R and U = (U1, . . . ,Us) is a uniform r.v. over (0, 1)s .

(Crude) Monte Carlo method:
1. Generate n independent copies of U ∼ U(0, 1)s , say U1, . . . ,Un;
2. Estimate µ by µ̂n = (1/n)

∑n
i=1 f (Ui ).

Almost sure convergence as n → ∞ (strong law of large numbers).
Can use central limit theorem to compute a confidence interval on µ:

P
[
µ ∈

(
µ̂n −

cαSn√
n
, µ̂n +

cαSn√
n

)]
≈ 1− α,

where S2
n is any consistent estimator of σ2 = Var[f (U)]. Converges at slow rate: O(n−1/2).
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Quasi-Monte Carlo (QMC)
Replace the independent random points Ui by a set of deterministic points

Pn = {u0, . . . ,un−1} that cover (0, 1)s more evenly . Approximate

µ =

∫
(0,1)s

f (u)du by µ̄n =
1

n

n−1∑
i=0

f (ui ).

For various spaces H of functions f , one has

|En| := |µ̄n − µ| ≤ Dn(Pn) · V(f ) (worst-case error bound)

for all f ∈ H, where V(f ) is the variation of f in H and D(Pn) measures the discrepancy
between the empirical distribution of Pn and the uniform distribution over (0, 1)s .

Both depend on H. Typically, we know how to construct Pn such that

Dn(Pn) = O(n−α(log n)s−1) for some α > 1/2 (low discrepancy points).

When V(f ) < ∞, |En| also converges at this rate, which beats the MC rate.

Difficulty: very hard to estimate the error En in practice.
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Randomized quasi-Monte Carlo (RQMC)
We randomize Pn into P̃n = {U1, . . . ,Un} ⊂ (0, 1)s such that

(1) the uniformity of Pn as a whole is preserved;
(2) each point Ui has the uniform distribution over (0, 1)s .

Unbiased RQMC estimator of µ: µ̂n,rqmc =
1

n

n−1∑
i=0

f (Ui ).

Variance estimation: Make R independent replicates of the RQMC estimator µ̂n,rqmc, then
estimate µ and Var[µ̂n,rqmc] by their sample mean and sample variance.

Variance of sample average is (approximately) O(R−1n−2α) .

For a fixed computing budget Rn, One prefers a small R (e.g., R = 10) and large n.

How do we compute a confidence interval on µ?
The CLT applies for R → ∞, but we want a small R.
For R fixed and n → ∞, the sample average is often far from normally distributed.
Then using the bootstrap appears as an appropriate approach. We want to test that!
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Example: Lattice rule
Select a = (a1, . . . , as) ∈ {1, · · · , n − 1}s , put v1 = a/n and define

Pn = {ui = iv1 mod 1, i = 0, . . . , n − 1}

Example: s = 2, n = 101, v1 = (1, 12)/n.

0 1

1

ui ,2

ui ,1

v1

Here, each one-dimensional projection is {0, 1/101, . . . , 100/101}.
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Another example: s = 2, n = 1021, v1 = (1, 90)/n.

Pn = {ui = iv1 mod 1 : i = 0, . . . , n − 1}.

0 1

1

ui ,2

ui ,1

v1
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Randomly-Shifted Lattice

Example: lattice with s = 2, n = 101, v1 = (1, 12)/101.

0 1

1

ui ,2

ui ,1

U
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RQMC Point Sets Considered Here
▶ Lat-RS: Lattice rule of rank 1 with random shift (RS).

▶ The ith point is ui = (ia mod n)/n with a = (a1, . . . , as) for selected aj ∈ {1, . . . , n − 1};
▶ RS: Uniform random point U ∈ (0, 1)s and add it to each point ui .

▶ Lat-RSB: Lattice rule + RS + baker

▶ Add a baker’s transformation after RS: replace each ui,j by 1− 2|ui,j − 1/2|;
▶ Brings continuity over the s-dimensional unit torus: may improve the convergence rate.

▶ Sob-DS: Digital net in base 2 with digital shift (DS)

▶ Coord. j of point i =
∑k−1

ℓ=0 ai,ℓ2
ℓ is ui,j =

∑w
ℓ=1 ui,j,ℓ2

−ℓ where
(ui,j,1, . . . , ui,j,w )

t = Cj · (ai,0, . . . , ai,k−1)
t mod 2 and the Cj are binary generating matrices.

▶ DS: Make bitwise xor of random vector U : U(0, 1)s with each point ui .

▶ Sob-LMS: Digital net in base 2 with left matrix scramble (LMS) + DS

▶ Pre-multiply each Cj by a random lower triangular w × w matrix Lj with 1’s on the diagonal and
i.i.d. binary entries below the diagonal. Also add DS.

▶ Sob-NUS: Digital net in base 2 with nested uniform scramble (NUS)

▶ Performs more involved nested uniform permutations of the digits (bits).
▶ Obeys a CLT when n → ∞, under some conditions.
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Three types of confidence intervals (CI)
Standard Student-t interval. Assume that the RQMC estimator µ̂n,rqmc has a normal
distribution, use the empirical mean ȳR and variance S2

R of its R replicates y1, . . . , yR to
compute a CI by assuming that

√
R(ȳR − µ)/SR ∼ Student with R − 1 degrees of freedom.

Percentile (basic) bootstrap. If we knew the exact distribution of ȳR − µ, we could
compute an exact 95% CI just by using the 2.5% and 97.5% quantiles of that distribution.
We don’t, but we can approximate it by resampling B new approximate realizations of ȳR ,
each one by resampling R observations with replacement from the data y1, . . . , yR .
If ȳ∗(1) ≤ · · · ≤ ȳ∗(B) are the sorted values and B = 1000, the 95% CI has the form(
ȳ∗(25), ȳ∗(975)

)
.

Bootstrap t. Similar, but we approximate the distribution of
√
R(ȳR − µ)/SR instead, by

resampling B times R observations, computing the B realizations of
√
R(ȳ∗R − ȳR)/S

∗
R , and

the appropriate quantiles t∗L and t∗U of their distribution. The CI is(
ȳR − SRt

∗
U/

√
R, ȳR − SRt

∗
L/

√
R
)
.
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Bootstrap properties (Hall 1988)

With skewness γ and kurtosis coefficient κ, the coverage error is:

Normal theory: (1/R)φ(z1−α/2)
[

0.14κ− 2.12γ2 − 3.35
]
+O(1/R2),

Percentile: (1/R)φ(z1−α/2)
[
−0.72κ− 0.37γ2 − 3.35

]
+O(1/R2),

Bootstrap t: (1/R)φ(z1−α/2)
[
−2.84κ+ 4.25γ2

]
+O(1/R2).

The bootstrap t has the advantage of missing the −3.35 constant. It has a large positive
coefficient for γ2 (extra coverage for skewed data) where the others have negative
coefficients. The asymptotics predict that it will undercover when κ is large and γ = 0.

For R different values yr , P(SR = 0) = R1−R .
For R = 5, this gives P(SR = 0) = 1/54 = 1/625, which is not negligible.
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Selected functions and set of experiments

▶ Five types of RQMC point sets: Lat-RS, Lat-RSB, Sob-DS, Sob-LMS, Sob-NUS.

▶ Each with n = 2k points for k = 6, 8, 10, 12, 14, and in s = 4, 8, 16, 32 dimensions.

▶ Bootstrap with B = 1000.
▶ Selected functions:

1. SumUeU (smooth, additive): f (u) = −s +
∑s

j=1 uj exp(uj).

2. MC2 (smooth): f (u) = −1 + (s − 1/2)s
∏s

j=1(xj − 1/2).
3. PieceLinGauss (piecewise linear, continuous, Gaussian inputs):

f (u) = max
(
s−1/2

∑s
j=1 Φ

−1(uj)− τ, 0
)
− φ(τ) + τΦ(−τ).

4. IndSumNormal (discontinuous, infinite variation):
f (u) = −Φ(1) + I{s−1/2

∑s
j=1 Φ

−1(uj) ≥ 1},
5. SmoothGaus (smooth, bounded, monotone):

f (u) = −Φ(1/
√
2) + Φ(1 + s−1/2

∑s
j=1 Φ

−1(uj)).

6. RidgeJohnsonSU (heavy-tailed): f (u) = −η + F−1(s−1/2
∑s

j=1 uj) where F is the CDF of
the Johnson’s SU distribution with skewness −5.66 and kurtosis 96.8 for any s.
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Results
▶ Experiments

▶ 2400 tasks: 6 integrands, 5 RQMC methods, 4 dimensions, 5 RQMC sample sizes and 4
values of R (5, 10, 20, 30).

▶ For each case, we computed 1000 independent CIs at 95%, and declared a “failure” if there
was less than 92.7% coverage (less than 927/1000 of the intervals covered the true value).
If the true coverage is at least 94%, this happens with probability less than 4%.

▶ Results
▶ The percentile method failed for 1698 (70.75%) of those 2400 tasks

▶ Not well suited to very small sample sizes
▶ Not well regarded for setting confidence intervals for the mean.

▶ The bootstrap t method failed 81 times
▶ 74 for Sob-LMS on SumUeU (44 times) or MC2 (30 times); spiky histograms, see next slide
▶ Interval of infinite length if SR = 0: 21 times for IndSumNormal with R = 5. Discrete

distribution, fewer than 2k different values.

▶ The plain Student t confidence interval method failed only 3 times.
▶ Fails only when R = 5 (bootstrap t has coverage higher than 95% then)
▶ Coverage higher than 97% 81 times (SumUeU and MC2).



D
ra
ft

13
Histograms (mostly unusual ones)
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▶ RidgeJohnsonSU: negatively skewed (other
RQMC methods too)

▶ SumUeU (and MC2): “spike plus outliers”

▶ PieceLinGauss: bimodal (often for LAT+baker)

▶ IndSumNormal: Gaussian plus a spike near one
value

▶ SmoothGauss: roughly Gaussian, as most of
those in the data set

▶ MC2 Sob-NUS: untypical for NUS (more
frequent for LMS).
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CI Coverage and width, versus skewness and kurtosis, Student t intervals, R = 10
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Coverage and length: standard t intervals and R = 10

▶ Some examples with high kurtosis, none
with extreme skewness

▶ Standard CI known to have robust coverage
in response to kurtosis but vulnerable to
skewness.

▶ Kurtosis increases nominal coverage for the
standard t intervals

▶ CI length decreasing with extreme kurtosis
(Sob-LMS with SumUeU and MC2)

▶ Small R: rare outliers, CIs are extremely
short and cover the true mean often
enough.
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Conclusions

▶ Surprise: Two-sided CIs using Student-t distribution work well for RQMC.

▶ We were expecting the bootstrap t to perform better, but it does not.

▶ Bootstrap t not working well for discrete random variables (SumNormalInd).

▶ The bootstrap t is known to have better coverage for one-sided intervals, not considered
here. It is O(1/

√
n) vs O(1/n) for other methods.

One last recommendation: Aways look at the R individual averages that you obtained. They
contain all the information that can be used by any method!

Thank you!
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