Confidence Intervals for Randomized Quasi-Monte Carlo Estimators

Pierre L'Ecuyer, Marvin K. Nakayama, Art B. Owen, Bruno Tuffin

EURO 2024, Copenhagen

1

Monte Carlo (MC) integration

A simulation model produces a random output X. We want to estimate

$$\boldsymbol{\mu} = \mathbb{E}[X] = \mathbb{E}[f(\boldsymbol{U})] = \int_{(0,1)^s} f(\boldsymbol{u}) \, d\boldsymbol{u} = \int_0^1 \cdots \int_0^1 f(u_1,\ldots,u_s) \, du_1 \cdots du_s$$

where $f: (0,1)^s \to \mathbb{R}$ and $U = (U_1, \ldots, U_s)$ is a uniform r.v. over $(0,1)^s$.

(Crude) Monte Carlo method:

- 1. Generate *n* independent copies of $U \sim \mathcal{U}(0, 1)^s$, say U_1, \ldots, U_n ;
- 2. Estimate μ by $\hat{\mu}_n = (1/n) \sum_{i=1}^n f(\boldsymbol{U}_i)$.

Monte Carlo (MC) integration

A simulation model produces a random output X. We want to estimate

$$\boldsymbol{\mu} = \mathbb{E}[X] = \mathbb{E}[f(\boldsymbol{U})] = \int_{(0,1)^s} f(\boldsymbol{u}) \, d\boldsymbol{u} = \int_0^1 \cdots \int_0^1 f(u_1,\ldots,u_s) \, du_1 \cdots du_s$$

where $f: (0,1)^s \to \mathbb{R}$ and $U = (U_1, \ldots, U_s)$ is a uniform r.v. over $(0,1)^s$.

(Crude) Monte Carlo method:

- 1. Generate *n* independent copies of $\boldsymbol{U} \sim \mathcal{U}(0,1)^s$, say $\boldsymbol{U}_1, \ldots, \boldsymbol{U}_n$;
- 2. Estimate μ by $\hat{\mu}_n = (1/n) \sum_{i=1}^n f(\boldsymbol{U}_i)$.

Almost sure convergence as $n \to \infty$ (strong law of large numbers). Can use central limit theorem to compute a confidence interval on μ :

$$\mathbb{P}\left[\mu \in \left(\hat{\mu}_n - \frac{c_\alpha S_n}{\sqrt{n}}, \ \hat{\mu}_n + \frac{c_\alpha S_n}{\sqrt{n}}\right)\right] \approx 1 - \alpha,$$

where S_n^2 is any consistent estimator of $\sigma^2 = \operatorname{Var}[f(\boldsymbol{U})]$. Converges at slow rate: $\mathcal{O}(n^{-1/2})$.

Quasi-Monte Carlo (QMC)

Replace the independent random points U_i by a set of **deterministic** points $P_n = \{u_0, \ldots, u_{n-1}\}$ that cover $(0, 1)^s$ more evenly. Approximate

$$\mu = \int_{(0,1)^s} f(\boldsymbol{u}) \mathrm{d}\boldsymbol{u}$$
 by $\bar{\mu}_n = \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{u}_i).$

Quasi-Monte Carlo (QMC)

Replace the independent random points U_i by a set of **deterministic** points $P_n = \{u_0, \ldots, u_{n-1}\}$ that cover $(0, 1)^s$ more evenly. Approximate

$$\mu = \int_{(0,1)^s} f(\boldsymbol{u}) d\boldsymbol{u}$$
 by $\bar{\mu}_n = \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{u}_i)$

For various spaces \mathcal{H} of functions f, one has

$$|E_n| := |\bar{\mu}_n - \mu| \le \mathcal{D}_n(P_n) \cdot \mathcal{V}(f)$$
 (worst-case error bound)

for all $f \in \mathcal{H}$, where $\mathcal{V}(f)$ is the variation of f in \mathcal{H} and $\mathcal{D}(P_n)$ measures the discrepancy between the empirical distribution of P_n and the uniform distribution over $(0, 1)^s$. Both depend on \mathcal{H} . Typically, we know how to construct P_n such that $\mathcal{D}_n(P_n) = \mathcal{O}(n^{-\alpha}(\log n)^{s-1})$ for some $\alpha > 1/2$ (low discrepancy points). When $\mathcal{V}(f) < \infty$, $|E_n|$ also converges at this rate, which beats the MC rate. Difficulty: very hard to estimate the error E_n in practice.

Randomized quasi-Monte Carlo (RQMC)

We randomize P_n into $\tilde{P}_n = \{ \boldsymbol{U}_1, \dots, \boldsymbol{U}_n \} \subset (0,1)^s$ such that

- (1) the uniformity of P_n as a whole is preserved;
- (2) each point U_i has the uniform distribution over $(0,1)^s$.

Unbiased RQMC estimator of
$$\mu$$
: $\hat{\mu}_{n,rqmc} = \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{U}_i).$

Variance estimation: Make *R* independent replicates of the RQMC estimator $\hat{\mu}_{n,rqmc}$, then estimate μ and $Var[\hat{\mu}_{n,rqmc}]$ by their sample mean and sample variance.

Variance of sample average is (approximately) $\mathcal{O}(R^{-1}n^{-2\alpha})$.

For a fixed computing budget Rn, One prefers a small R (e.g., R = 10) and large n.

How do we compute a confidence interval on μ ?

The CLT applies for $R \to \infty$, but we want a small R. For R fixed and $n \to \infty$, the sample average is often far from normally distributed. Then using the bootstrap appears as an appropriate approach. We want to test that!

Example: Lattice rule

Select $\mathbf{a} = (a_1, \dots, a_s) \in \{1, \dots, n-1\}^s$, put $\mathbf{v}_1 = \mathbf{a}/n$ and define $\mathbf{P}_n = \{\mathbf{u}_i = i \mathbf{v}_1 \mod 1, i = 0, \dots, n-1\}$

Example: s = 2, n = 101, $v_1 = (1, 12)/n$.

Example: Lattice rule

Select $\mathbf{a} = (a_1, \dots, a_s) \in \{1, \dots, n-1\}^s$, put $\mathbf{v}_1 = \mathbf{a}/n$ and define $\mathbf{P}_n = \{\mathbf{u}_i = i \mathbf{v}_1 \mod 1, i = 0, \dots, n-1\}$

Example: s = 2, n = 101, $v_1 = (1, 12)/n$.

Another example: s = 2, n = 1021, $v_1 = (1, 90)/n$.

$$P_{n} = \{ u_{i} = i v_{1} \mod 1 : i = 0, \dots, n-1 \}.$$

$$u_{i,2}$$

$$v_{1}$$

$$0$$

$$1$$

$$u_{i,1}$$

RQMC Point Sets Considered Here

- Lat-RS: Lattice rule of rank 1 with random shift (RS).
 - The *i*th point is $u_i = (i a \mod n)/n$ with $a = (a_1, \ldots, a_s)$ for selected $a_j \in \{1, \ldots, n-1\}$;
 - RS: Uniform random point $\boldsymbol{U} \in (0,1)^s$ and add it to each point \boldsymbol{u}_i .
- Lat-RSB: Lattice rule + RS + baker
 - Add a baker's transformation after RS: replace each $u_{i,j}$ by $1 2|u_{i,j} 1/2|$;
 - Brings continuity over the s-dimensional unit torus: may improve the convergence rate.
- Sob-DS: Digital net in base 2 with digital shift (DS)
 - Coord. *j* of point $i = \sum_{\ell=0}^{k-1} a_{i,\ell} 2^{\ell}$ is $u_{i,j} = \sum_{\ell=1}^{w} u_{i,j,\ell} 2^{-\ell}$ where $(u_{i,j,1}, \ldots, u_{i,j,w})^{t} = C_{j} \cdot (a_{i,0}, \ldots, a_{i,k-1})^{t} \mod 2$ and the C_{j} are binary generating matrices.
 - **DS**: Make bitwise xor of random vector \boldsymbol{U} : $U(0,1)^s$ with each point \boldsymbol{u}_i .
- ▶ Sob-LMS: Digital net in base 2 with left matrix scramble (LMS) + DS
 - Pre-multiply each C_j by a random lower triangular $w \times w$ matrix L_j with 1's on the diagonal and i.i.d. binary entries below the diagonal. Also add DS.
- Sob-NUS: Digital net in base 2 with nested uniform scramble (NUS)
 - Performs more involved nested uniform permutations of the digits (bits).
 - Obeys a CLT when $n \to \infty$, under some conditions.

Three types of confidence intervals (CI)

Standard Student-t interval. Assume that the RQMC estimator $\hat{\mu}_{n,\text{rqmc}}$ has a normal distribution, use the empirical mean \bar{y}_R and variance S_R^2 of its R replicates y_1, \ldots, y_R to compute a CI by assuming that $\sqrt{R}(\bar{y}_R - \mu)/S_R \sim \text{Student with } R - 1$ degrees of freedom.

Three types of confidence intervals (CI)

Standard Student-t interval. Assume that the RQMC estimator $\hat{\mu}_{n,\text{rqmc}}$ has a normal distribution, use the empirical mean \bar{y}_R and variance S_R^2 of its R replicates y_1, \ldots, y_R to compute a CI by assuming that $\sqrt{R}(\bar{y}_R - \mu)/S_R \sim \text{Student with } R - 1$ degrees of freedom.

Percentile (basic) bootstrap. If we knew the exact distribution of $\bar{y}_R - \mu$, we could compute an exact 95% CI just by using the 2.5% and 97.5% quantiles of that distribution. We don't, but we can approximate it by resampling *B* new approximate realizations of \bar{y}_R , each one by resampling *R* observations with replacement from the data y_1, \ldots, y_R . If $\bar{y}^{*(1)} \leq \cdots \leq \bar{y}^{*(B)}$ are the sorted values and B = 1000, the 95% CI has the form $(\bar{y}^{*(25)}, \bar{y}^{*(975)})$.

Three types of confidence intervals (CI)

Standard Student-t interval. Assume that the RQMC estimator $\hat{\mu}_{n,\text{rqmc}}$ has a normal distribution, use the empirical mean \bar{y}_R and variance S_R^2 of its R replicates y_1, \ldots, y_R to compute a CI by assuming that $\sqrt{R}(\bar{y}_R - \mu)/S_R \sim \text{Student with } R - 1$ degrees of freedom.

Percentile (basic) bootstrap. If we knew the exact distribution of $\bar{y}_R - \mu$, we could compute an exact 95% CI just by using the 2.5% and 97.5% quantiles of that distribution. We don't, but we can approximate it by resampling *B* new approximate realizations of \bar{y}_R , each one by resampling *R* observations with replacement from the data y_1, \ldots, y_R . If $\bar{y}^{*(1)} \leq \cdots \leq \bar{y}^{*(B)}$ are the sorted values and B = 1000, the 95% CI has the form $(\bar{y}^{*(25)}, \bar{y}^{*(975)})$.

Bootstrap *t*. Similar, but we approximate the distribution of $\sqrt{R}(\bar{y}_R - \mu)/S_R$ instead, by resampling *B* times *R* observations, computing the *B* realizations of $\sqrt{R}(\bar{y}_R^* - \bar{y}_R)/S_R^*$, and the appropriate quantiles t_I^* and t_{II}^* of their distribution. The CI is

$$\left(\overline{y}_R - S_R t_U^*/\sqrt{R}, \ \overline{y}_R - S_R t_L^*/\sqrt{R}\right).$$

Bootstrap properties (Hall 1988)

With skewness γ and kurtosis coefficient κ , the coverage error is:

Normal theory:
$$(1/R)\varphi(z^{1-\alpha/2})[$$
 $0.14\kappa - 2.12\gamma^2 - 3.35] + \mathcal{O}(1/R^2),$ Percentile: $(1/R)\varphi(z^{1-\alpha/2})[-0.72\kappa - 0.37\gamma^2 - 3.35] + \mathcal{O}(1/R^2),$ Bootstrap t: $(1/R)\varphi(z^{1-\alpha/2})[-2.84\kappa + 4.25\gamma^2] + \mathcal{O}(1/R^2).$

The bootstrap t has the advantage of missing the -3.35 constant. It has a large positive coefficient for γ^2 (extra coverage for skewed data) where the others have negative coefficients. The asymptotics predict that it will undercover when κ is large and $\gamma = 0$.

For *R* different values y_r , $\mathbb{P}(S_R = 0) = R^{1-R}$. For R = 5, this gives $\mathbb{P}(S_R = 0) = 1/5^4 = 1/625$, which is not negligible.

Selected functions and set of experiments

- ▶ Five types of RQMC point sets: Lat-RS, Lat-RSB, Sob-DS, Sob-LMS, Sob-NUS.
- Each with $n = 2^k$ points for k = 6, 8, 10, 12, 14, and in s = 4, 8, 16, 32 dimensions.
- Bootstrap with B = 1000.
- Selected functions:
 - 1. SumUeU (smooth, additive): $f(\boldsymbol{u}) = -s + \sum_{j=1}^{s} u_j \exp(u_j)$.
 - 2. MC2 (smooth): $f(\boldsymbol{u}) = -1 + (s 1/2)^s \prod_{j=1}^s (x_j 1/2)$.
 - 3. PieceLinGauss (piecewise linear, continuous, Gaussian inputs):

 $f(\boldsymbol{u}) = \max\left(s^{-1/2}\sum_{j=1}^{s} \Phi^{-1}(u_j) - \tau, 0\right) - \varphi(\tau) + \tau \Phi(-\tau).$

- 4. IndSumNormal (discontinuous, infinite variation): $f(\boldsymbol{u}) = -\Phi(1) + \mathbb{I}\{s^{-1/2} \sum_{i=1}^{s} \Phi^{-1}(u_i) \ge 1\},$
- 5. SmoothGaus (smooth, bounded, monotone): $f(\boldsymbol{u}) = -\Phi(1/\sqrt{2}) + \Phi(1 + s^{-1/2} \sum_{j=1}^{s} \Phi^{-1}(u_j)).$
- 6. RidgeJohnsonSU (heavy-tailed): $f(\mathbf{u}) = -\eta + F^{-1}(s^{-1/2}\sum_{j=1}^{s} u_j)$ where F is the CDF of the Johnson's SU distribution with skewness -5.66 and kurtosis 96.8 for any s.

Results

Experiments

- 2400 tasks: 6 integrands, 5 RQMC methods, 4 dimensions, 5 RQMC sample sizes and 4 values of R (5, 10, 20, 30).
- For each case, we computed 1000 independent CIs at 95%, and declared a "failure" if there was less than 92.7% coverage (less than 927/1000 of the intervals covered the true value). If the true coverage is at least 94%, this happens with probability less than 4%.

Results

- ▶ The percentile method failed for 1698 (70.75%) of those 2400 tasks
 - Not well suited to very small sample sizes
 - Not well regarded for setting confidence intervals for the mean.
- The bootstrap t method failed 81 times
 - ▶ 74 for Sob-LMS on SumUeU (44 times) or MC2 (30 times); spiky histograms, see next slide
 - ▶ Interval of infinite length if $S_R = 0$: 21 times for IndSumNormal with R = 5. Discrete distribution, fewer than 2^k different values.
- The plain Student t confidence interval method failed only 3 times.
 - Fails only when R = 5 (bootstrap t has coverage higher than 95% then)
 - Coverage higher than 97% 81 times (SumUeU and MC2).

Histograms (mostly unusual ones)

- RidgeJohnsonSU: negatively skewed (other RQMC methods too)
- SumUeU (and MC2): "spike plus outliers"

PieceLinGauss: bimodal (often for LAT+baker)
 IndSumNormal: Gaussian plus a spike near one value

- SmoothGauss: roughly Gaussian, as most of those in the data set
- MC2 Sob-NUS: untypical for NUS (more frequent for LMS).

CI Coverage and width, versus skewness and kurtosis, Student t intervals, R = 10

Coverage and length: standard t intervals and R = 10

- Some examples with high kurtosis, none with extreme skewness
- Standard CI known to have robust coverage in response to kurtosis but vulnerable to skewness.
- Kurtosis increases nominal coverage for the standard t intervals
- CI length decreasing with extreme kurtosis (Sob-LMS with SumUeU and MC2)
- Small R: rare outliers, CIs are extremely short and cover the true mean often enough.

Conclusions

- Surprise: Two-sided CIs using Student-t distribution work well for RQMC.
- We were expecting the bootstrap t to perform better, but it does not.
- Bootstrap t not working well for discrete random variables (SumNormalInd).
- ► The bootstrap t is known to have better coverage for one-sided intervals, not considered here. It is O(1/√n) vs O(1/n) for other methods.

One last recommendation: Aways look at the R individual averages that you obtained. They contain all the information that can be used by any method!

Thank you!

Some references

- P. L'Ecuyer, M. Nakayama, A. B. Owen, and B. Tuffin. Confidence Intervals for Randomized Quasi-Monte Carlo Estimators, *Proceedings of the 2023 Winter Simulation Conference*, IEEE Press, pages 445–456, 2023.
- Monte Carlo and Quasi-Monte Carlo Methods 2022, 2020, 2018, ... Springer-Verlag.
- J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, 2010.
- P. L'Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics, 13(3):307–349, 2009.
- P. L'Ecuyer. Randomized quasi-Monte Carlo: An introduction for practitioners. In P. W. Glynn and A. B. Owen, editors, *Monte Carlo and Quasi-Monte Carlo Methods 2016*, 2017.
- P. L'Ecuyer, P. Marion, M. Godin, and F. Puchhammer. A Tool for Custom Construction of QMC and RQMC Point Sets. *Monte Carlo and Quasi-Monte Carlo Methods 2020*, A. Keller, Ed., Springer-Verlag, 51–70, 2022.
- A. B. Owen. Practical Quasi-Monte Carlo. Draft available at https://artowen.su.domains/mc/practicalqmc.pdf, 2023.
- H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1992.