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What this talk is about

Monte Carlo (MC) simulation is widely used to estimate the expectation E[X ] of a random
variable X and compute a confidence interval on E[X ]. MSE = Var[X̄n] = O(n−1).

But simulation usually provides information to do much more! The output data can be used
to estimate the entire distribution of X , e.g., the cumulative distribution function (cdf) F of
X , defined by F (x) = P[X ≤ x ], or its density f defined by f (x) = F ′(x).

If X1, . . . ,Xn are n indep. realizations of X , the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x ]

is unbiased for F (x) at all x , and Var[F̂n(x)] = O(n−1).

For a continuous r.v. X , the density f provides a better visual idea of the distribution.
Here we focus on estimating f over [a, b] ⊂ R.
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Setting

Classical density estimation was developed in the context where independent observations
X1, . . . ,Xn of X are given and one wishes to estimate the density f of X from that.
Best rate: Var[f̂n(x)] = O(n−4/5).

Here we assume that X1, . . . ,Xn are generated by simulation from a stochastic model.
We can choose n and we have some freedom on how the simulation is performed.

The Xi ’s are realizations of a random variable X = g(U) ∈ R with density f , where
U = (U1, . . . ,Us) ∼ U(0, 1)s and g(u) can be computed easily for any u ∈ (0, 1)s .

1. Can we obtain a better estimate of f with RQMC instead of MC? How much better?
What about taking a stratified sample over [0, 1)s?

2. Is it possible to obtain unbiased density estimators that converge as O(n−1) or faster,
using clever sampling strategies?
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Small example: A stochastic activity network
Gives precedence relations between activities. Activity k has random duration Yk (also length
of arc k) with known cdf Fk(y) := P[Yk ≤ y ].

Project duration X = (random) length of longest path from source to sink.
Can look at deterministic equivalent of X , E[X ], cdf, density, ...

The sample cdf
F̂n(x) = 1

n

∑n
i=1 I[Xi ≤ x ]

is an unbiased estimator of the cdf
F (x) = P[X ≤ x ].

Want to estimate the density of X ,
f (x) = F ′(x) = d

dxP[X ≤ x ].

The sample derivative F̂ ′n(x) is useless
fo estimate f (x), because it is 0 almost
everywhere.
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Yk ∼ N(µk , σ

2
k) for k = 1, 2, 4, 11, 12, and Yk ∼ Expon(1/µk) otherwise.

µ1, . . . , µ13: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

Results of an experiment with n = 100 000. Note: X is not normal!

X
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000

Xdet = 48.2

mean = 64.2

ξ̂0.99 = 131.8
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Density Estimation

Suppose we estimate the density f over a finite interval [a, b].

Let f̂n(x) denote the density estimator at x , with sample size n.

We use the following measures of error:

MISE = mean integrated squared error =

∫ b

a
E[(f̂n(x)− f (x))2]dx

= IV + ISB

IV = integrated variance =

∫ b

a
Var[f̂n(x)]dx

ISB = integrated squared bias =

∫ b

a
(E[f̂n(x)]− f (x))2dx

To minimize the MISE, we need to balance the IV and ISB.
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Density Estimation

Simple histogram: Partition [a, b] in m intervals of size h = (b − a)/m and define

f̂n(x) =
nj
nh

for x ∈ Ij = [a + (j − 1)h, a + jh), j = 1, ...,m

where nj is the number of observations Xi that fall in interval j .

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered at
0) and bandwidth h > 0 (horizontal stretching factor for the kernel). The KDE is

f̂n(x) =
1

nh

n∑
i=1

k

(
x − Xi

h

)
=

1

nh

n∑
i=1

k

(
x − g(Ui )

h

)
.
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Example of a KDE in s = 1 dimension
KDE (blue) vs true density (red) with n = 219:
Here we take U1, . . . ,Un in (0, 1) and put Xi = F−1(Ui).

midpoint rule (left) stratified sample of U = F (X ) (right).
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Asymptotic convergence with Monte Carlo for smooth f

Here we assume independent random samples (Monte Carlo or given data).
For histograms and KDEs, when n→∞ and h→ 0:

AMISE = AIV + AISB ∼ C

nh
+ Bhα .

For any g : R→ R, define

R(g) =

∫ b

a
(g(x))2dx , µr (g) =

∫∞
−∞ x rg(x)dx , for r = 0, 1, 2, . . .

C B α

Histogram 1 R(f ′) /12 2

KDE µ0(k2) (µ2(k))2 R(f ′′) /4 4
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The asymptotically optimal h is

h∗ =

(
C

Bαn

)1/(α+1)

and it gives AMISE = Kn−α/(1+α).

C B α h∗ AMISE

Histogram 1
R(f ′)

12
2 (nR(f ′)/6)−1/3 O(n−2/3)

KDE µ0(k2)
(µ2(k))2 R(f ′′)

4
4

(
µ0(k2)

(µ2(k))2R(f ′′)n

)1/5

O(n−4/5)

To estimate h∗, one can estimate R(f ′) and R(f ′′) via KDE (plugin).

This is true under the simplifying assumption that h must be the same all over [a, b].
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Can we take the stochastic derivative of an estimator of F?

Can we estimate the density f (x) = F ′(x) by the derivative of an estimator of F (x).

A simple candidate cdf estimator is the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x ].

However dF̂n(x)/dx = 0 almost everywhere, so this cannot be a useful density estimator!

We need a smoother estimator of F .
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Conditional Monte Carlo (CMC) for Derivative Estimation
Idea: Replace indicator I[Xi ≤ x ] by its conditional cdf given filtered information:

F (x | G)
def
= P[X ≤ x | G]

where the sigma-field G contains not enough information to reveal X but enough to compute
F (x | G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F (x | G) is a continuous function of x over [a, b],
differentiable except perhaps over a denumerable set of points D(G) ⊂ [a, b], and for which
F ′(x | G) = dF (x | G)/dx (when it exists) is bounded uniformly in x by a random variable Γ
such that E[Γ2] ≤ Kγ <∞.
Theorem 1: Under Ass. 1, for x ∈ [a, b], E[F ′(x | G)] = f (x) and Var[F ′(x | G)] < Kγ .

Theorem 2: If G ⊂ G̃ both satisfy Assumption 1, then Var[F ′(x | G)] ≤ Var[F ′(x | G̃)].

Conditional density estimator (CDE) with sample size n: f̂cde,n(x) = 1
n

∑n
i=1 F

′(x | G(i))

where G(1), . . . ,G(n) are n independent “realizations” of G. Var[f̂cde,n(x)] = O(n−1) .
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Example 1. A sum of independent random variables

X = Y1 + · · ·+ Yd , where the Yj are independent and continuous with cdf Fj and density fj ,
and G is defined by hiding Yk for an arbitrary k :

G = Gk = S−k

X
def
= Y1 + · · ·+

6 \

Yk + · · ·+ Yd .

We have
F (x | Gk) = P[X ≤ x | S−k ] = P[Yk ≤ x − S−k ] = Fk(x − S−k).

Continuous and differentiable if Yk has a density.
The density estimator for X becomes F ′(x | Gk) = fk(x − S−k). Shifted density of Yk .

Asmussen (2018) introduced the idea of using CMC for density estimation for this special
case, with k = d and same Fj for all j .



D
ra

ft

13

Example 1. A sum of independent random variables

X = Y1 + · · ·+ Yd , where the Yj are independent and continuous with cdf Fj and density fj ,
and G is defined by hiding Yk for an arbitrary k :

G = Gk = S−k

X

def
= Y1 + · · ·+ 6 \Yk + · · ·+ Yd .

We have
F (x | Gk) = P[X ≤ x | S−k ] = P[Yk ≤ x − S−k ] = Fk(x − S−k).

Continuous and differentiable if Yk has a density.
The density estimator for X becomes F ′(x | Gk) = fk(x − S−k). Shifted density of Yk .

Asmussen (2018) introduced the idea of using CMC for density estimation for this special
case, with k = d and same Fj for all j .



D
ra

ft

13

Example 1. A sum of independent random variables

X = Y1 + · · ·+ Yd , where the Yj are independent and continuous with cdf Fj and density fj ,
and G is defined by hiding Yk for an arbitrary k :

G = Gk = S−k

X

def
= Y1 + · · ·+ 6 \Yk + · · ·+ Yd .

We have
F (x | Gk) = P[X ≤ x | S−k ] = P[Yk ≤ x − S−k ] = Fk(x − S−k).

Continuous and differentiable if Yk has a density.
The density estimator for X becomes F ′(x | Gk) = fk(x − S−k). Shifted density of Yk .

Asmussen (2018) introduced the idea of using CMC for density estimation for this special
case, with k = d and same Fj for all j .



D
ra

ft

14

Example 2: generalization

Let X = h(Y1, . . . ,Yd) and define Gk again by erasing a continuous Yk ;
Gk = (Y1, . . . ,Yk−1,Yk+1, . . . ,Yd).

Exemple: X = (Y1 + Y 2
2 )/Y3 where Y3 > 0.

If k = 3, since X ≤ x if and only if Y3 ≥ (Y1 + Y 2
2 )/x ,

we have F (x | G3) = P(X ≤ x | Y1,Y2) = 1− F3((Y1 + Y 2
2 )/x),

and the density estimator at x is F ′(x | G3) = f3((Y1 + Y 2
2 )/x)(Y1 + Y 2

2 )/x2.

If k = 2, then F (x | G2) = P(X ≤ x | Y1,Y3) = P(|Y2| ≤ (Y3x − Y1)1/2) = F2(Z )− F2(−Z )
where Z = (Y3x − Y1)1/2, and the density estimator at x is
F ′(x | G2) = (f2(Z ) + f2(−Z ))dZ/dx = (f2(Z )− f2(−Z ))Y3/(2Z ).

This second estimator can have a huge variance if Z can take values near 0; this shows that
a good choice of k can be crucial in general.
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Exemple: X = (Y1 + Y 2
2 )/Y3 where Y3 > 0.

If k = 3, since X ≤ x if and only if Y3 ≥ (Y1 + Y 2
2 )/x ,

we have F (x | G3) = P(X ≤ x | Y1,Y2) = 1− F3((Y1 + Y 2
2 )/x),

and the density estimator at x is F ′(x | G3) = f3((Y1 + Y 2
2 )/x)(Y1 + Y 2

2 )/x2.

If k = 2, then F (x | G2) = P(X ≤ x | Y1,Y3) = P(|Y2| ≤ (Y3x − Y1)1/2) = F2(Z )− F2(−Z )
where Z = (Y3x − Y1)1/2, and the density estimator at x is
F ′(x | G2) = (f2(Z ) + f2(−Z ))dZ/dx = (f2(Z )− f2(−Z ))Y3/(2Z ).

This second estimator can have a huge variance if Z can take values near 0; this shows that
a good choice of k can be crucial in general.
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Example 3: discontinuity issues

Let X = max(Y1,Y2) where Y1 and Y2 are independent and continuous. With G = G2 (we
hide Y2):

P[X ≤ x | Y1 = y) =

{
P[Y2 ≤ x | Y1 = y) = F2(x) if x ≥ y ;

0 if x < y .

If F2(y) > 0, this function is discontinuous at x = y , so Assumption 1 does not hold.
The method does not work in this case.

Same problem if X = min(Y1,Y2). With G = G2, we have

P[X ≤ x | Y1 = y) =

{
F2(x) if x < y ;

1 if x ≥ y .

If F2(y) < 1, this function is also discontinuous at x = y .
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Elementary quasi-Monte Carlo (QMC) Bounds (Recall)
Integration error for g : [0, 1)s → R with point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)s :

En =
1

n

n−1∑
i=0

g(ui )−
∫
[0,1)s

g(u)du .

Koksma-Hlawka inequality: |En| ≤ VHK(g)D∗(Pn) where

VHK(g) =
∑
∅6=v⊆S

∫
[0,1)s

∣∣∣∣∣∂|v|g∂v
(u)

∣∣∣∣∣ du, (Hardy-Krause (HK) variation)

D∗(Pn) = sup
u∈[0,1)s

∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣ (star-discrepancy).

There are explicit point sets for which D∗(Pn) = O(n−1(log n)s−1) = O(n−1+ε), ∀ε > 0.

Explicit RQMC constructions for which E[En] = 0 and Var[En] = O(n−2+ε), ∀ε > 0 .

With ordinary Monte Carlo (MC), one has Var[En] = O(n−1).
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Bounding the AIV under RQMC for a KDE

KDE density estimator at a single point x :

f̂n(x) =
1

n

n∑
i=1

1

h
k

(
x − g(Ui )

h

)
=

1

n

n∑
i=1

g̃(Ui ).

With RQMC points Ui , this is an RQMC estimator of E[g̃(U)] =
∫
[0,1)s g̃(u)du = E[f̂n(x)].

RQMC does not change the bias, but may reduce Var[f̂n(x)], and then the IV.

To get RQMC variance bounds, we need bounds on the variation of g̃ .

Partial derivatives:
∂|v|

∂uv
g̃(u) =

1

h

∂|v|

∂uv
k

(
x − g(u)

h

)
.

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k .
By expanding via the chain rule, we obtain terms in h−j for j = 2, . . . , |v|+ 1.
The term for v = S grows as h−s−1k(s) ((g(u)− x)/h)

∏s
j=1 gj(u) = O(h−s−1) when h→ 0.
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An AIV upper bound that we were able to prove
Assumptions. Let g : [0, 1]s → R be piecewise monotone in each coordinate uj when the
other coordinates are fixed, with at most Mj pieces. Assume that all first-order partial
derivatives of g are continuous and that ‖gw1gw2 · · · gw`

‖1 <∞ for all selections of
non-empty, mutually disjoint index sets w1, . . . ,w` ⊆ S = {1, . . . , s}.

For each j ∈ S, let Gj =
∥∥∥∏`∈S\{j} g{`}

∥∥∥
1

and cj = Mj ‖k(s)‖∞
(
Gj + I(s = 2) ‖g{1,2}‖1

)
.

Proposition Then the Hardy-Krause variation of g̃ satisfies

VHK(g̃) ≤ cjh
−s +O(h−s+1) for each j .

Corollary. With RQMC point sets having D∗(Pn) = O(n−1+ε) for all ε > 0 when n→∞,
using KH and squaring gives the bound

AIV = O(n−2+εh−2s) for all ε > 0.

By picking h to minimize the AMISE bound, we obtain AMISE = O(n−4/(2+s)+ε) .

Worst than MC when s ≥ 4. The factor h−2s hurts! But this is only an upper bound.
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Stratification of the unit cube, for the KDE
Partition [0, 1)s into n = bs congruent cubic cells Si :=

∏s
j=1 [ij/b, (ij + 1)/b) for

i = (i1, i2, . . . , is), 0 ≤ ij < b for each j , for some b ≥ 2.

Construct Pn = {U1, . . . ,Un} by sampling one point uniformly in each subcube Si,
independently, and put Xi = g(Ui ) for i = 1, . . . , n.

Proposition. The IV of a KDE under stratification never exceeds the IV of the same
estimator under MC.

Proposition. Suppose g is monotone. Then the KDE obtained from those points has

IV ≤ (b − a)s · k2(0) · h−2n−(s+1)/s .

Corollary. By taking h = κn−(s+1)/(6s), one has AMISE = O(n−(2/3)(s+1)/s) .

This bound has a better rate than MC for s < 5 and same rate for s = 5.
The factor h−2 in the IV bound hurts, but much less than h−2s .
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Applying RQMC to the CDE

To apply RQMC to the CDE, we must be able to write the density estimator as a function of
u ∈ [0, 1)s :

F (x | G) = g̃(x ,u),

F ′(x | G) = g̃ ′(x ,u) = dg̃(x ,u)/dx

for some g̃ : [a, b]× [0, 1)s for which g̃ ′(x , ·) has bounded HK variation for each x .

CDE sample: g̃ ′(x ,U1), . . . , g̃ ′(x ,Un) where {U1, . . . ,Un} is an RQMC point set over [0, 1)s .

If g̃ ′(x , ·) has bounded variation, then we can get an O(n−2+ε) rate for the MISE.

If g̃ ′(x , ·) has unbounded variation, RQMC may still reduce the IV, but there is no guarantee.
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Example: sum of independent random variables

X = Y1 + · · ·+ Yd , where the Yj are independent and continuous with cdf Fj and density fj ,
and G is defined by hiding Yk for an arbitrary k :

Gk = S−k
def
= Y1 + · · ·+ Yk + · · ·+ Yd = F−11 (U1) + · · ·+ F−1k (Uk) + · · ·+ F−1d (Ud).

We have g̃(x , ·) = F (x | Gk) = Fk(x − S−k)
and the density estimator is g̃ ′(x ,U) = F ′(x | Gk) = fk(x − S−k) where U = (U1, . . . ,Ud).

If g̃ ′(x , ·) has bounded HK variation, then MISE = O(n−2+ε).
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Experimental setting for numerical experiments
We tested the methods on some examples. For each n considered, we compute the KDE or
CDE with n samples, evaluate it at a set of ne evaluation points over [a, b], repeat this nr
times, compute the variance at each evaluation point, and estimate the IV.
For the KDE, we also estimated the ISB.

We repeat this for n = 214, . . . , 219 and fit the model MISE = κn−ν by linear regression:

log2MISE ≈ log2 κ− ν log2 n . We report ν̂ and also the MISE for n = 219.

MC and RQMC Point sets:

I MC: Independent points,

I Strat: stratification,

I Lat+s: lattice rule with a random shift modulo 1,

I Lat+s+b: lattice rule with a random shift modulo 1 + baker’s transformation,

I LMS: Sobol’ points with left matrix scrambling (LMS) + digital random shift.
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Displacement of a cantilever beam (Bingham 2017)

Displacement X of a cantilever beam with horizontal load Y2 and vertical load Y3:

X = h(Y1,Y2,Y3) =
κ

Y1

√
Y2

2

w4
+

Y3
2

t4

where κ = 5× 105, w = 4, t = 2, Y1, Y2, Y3 independent normal, Yj ∼ N (µj , σ
2
j ),

Description Symbol µj σj
Young’s modulus Y1 2.9× 107 1.45× 106

Horizontal load Y2 500 100
Vertical load Y3 1000 100

The goal is to estimate the density of X over [3.1707, 5.6675], which covers about 99% of
the density (it clips 0.5% on each side).
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Using RQMC with CMC

Conditioning on G1 = {Y2,Y3} means hiding Y1. We have

X =
κ

Y1

√
Y 2
2

w4
+

Y 2
3

t4
≤ x if and only if Y1 ≥

κ

x

√
Y 2
2

w4
+

Y 2
3

t4
def
= W1(x).

For x > 0,

F (x | G1) = P[Y1 ≥W1(x) |W1(x)] = 1− Φ((W1(x)− µ1)/σ1)

and

F ′(x | G1) = −φ((W1(x)− µ1)/σ1)W ′
1(x)

σ1
=
φ((W1(x)− µ1)/σ1)W1(x)

xσ1
.
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Suppose we condition on G2 = {Y1,Y3} instead, i.e., hide Y2. We have

X ≤ x if and only if Y 2
2 ≤ w4

(
(xY1/κ)2 − Y 2

3 /t
4
) def

= W2.

If W2 ≤ 0, then F ′(x | G2) = 0. If W2 > 0,

F (x | G2) = P[−
√

W2 ≤ Y2 ≤
√
W2 |W2] = Φ((

√
W2 − µ2)/σ2)− Φ(−(

√
W2 + µ2)/σ2)

and

F ′(x | G2) =
φ((
√
W2 − µ2)/σ2) + φ(−(

√
W2 + µ2)/σ2)

w4x(Y1/κ)2/(σ2
√
W2)

> 0.

For conditioning on G3, the analysis is the same as for G2, by symmetry, and we get

F ′(x | G3) =
φ((
√
W3 − µ3)/σ3) + φ(−(

√
W3 + µ3)/σ3)

t4x(Y1/κ)2/(σ3
√
W3)

> 0.

for W3 > 0, where W3 is defined in a similar way as W2.
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Instead of choosing a single conditioning k , we can take a convex combination:

f̂ (x) = α1F
′(x | G1) + α2F

′(x | G2) + α3F
′(x | G3),

where α1 + α2 + α3 = 1. This is equivalent to taking F ′(x | G1) as the main estimator and
the other two as control variates (CV). We can use CV theory to optimize the αj ’s.

ν̂ − log2MISE (n = 219)
KDE G1 G2 G3 comb. KDE G1 G2 G3 comb.

MC 0.80 0.97 0.98 0.99 0.98 14.7 19.3 14.5 22.8 22.5
stratif. 0.90 17.4
Lat+s — 2.06 2.82 2.04 2.02 — 38.9 25.4 41.5 41.5
Lat+s+b — 2.26 2.55 1.98 2.07 — 44.3 23.3 45.5 46.0
Sob+LMS 0.96 2.21 2.03 2.21 2.21 20.5 44.0 23.6 45.7 46.1

For n = 219, the MISE is about 2−14.7 for the usual KDE+MC and 2−46 for the new
CDE+RQMC; i.e., MISE is divided by more than 231 ≈ 2 millions.
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MISE Comparison for CDE with linear combination of 3 estimators, for cantilever.
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Five realizations of the density conditional on Gk (blue), their average (red), and the true
density (thick black) for k = 1 (left), k = 2 (middle), and k = 3 (right).
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CMC for the SAN Example
Want to estimate the density of the longest path length X .

CMC estimator of P[X ≤ x ]: F (x | G) = P[X ≤ x | {Yj , j 6∈ L}] for a minimal cut L.

Ex.: L = {5, 6, 7, 9, 10} and Yj = F−1j (Uj). This estimator continuous in the Uj ’s and in x .
(Erasing a singe Yj does not work.)
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For each j ∈ L, let Pj be the length of the longest path that goes through arc j when we
exclude Yj from that length. Then

F (x | G) = P [X < x | {Yj : j 6∈ L}] =
∏
j∈L

Fj [x − Pj ]

and
F ′(x | G) =

∑
j∈L

fj [x − Pj ]
∏

l∈L, l 6=j

Fl [x − Pj ],

if fj exists for all j ∈ L.

Under this conditioning, the cdf of every path length is continuous in x , and so is F (· | G),
and Assumption 1 holds, so F ′(x | G) is an unbiased density estimator.
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Estimated MISE = Kn−ν , for KDE with CMC.

ν̂ − log2MISE (n = 219)

KDE
MC 0.77 20.9
Lat+s 0.75 22.0
Sobol+LMS 0.76 22.0

CDE
MC 0.99 25.5
Lat+s 1.26 29.9
Sobol+LMS 1.25 29.9

With RQMC, we observe a convergence rate near O(n−1.25) for the IV and the MISE.

For n = 219, by using the new CDE+RQMC rather than the usual KDE+MC,
the MISE is divided by about 29 ≈ 500.
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Waiting-time distribution in a single-server queue

FIFO queue, arbitrary arrival process, independent service times with cdf G and density g .

Let W be the waiting time of a “random” customer.
Want to estimate p0 = P[W = 0] and density f of W over (0,∞).

The system starts empty and evolves over a day of length τ .
Tj = arrival time of customer j , T0 = 0,
Aj = Tj − Tj−1 = jth interarrival time,
Sj = service time of customer j ,
Wj = waiting time of customer j .

Random number of customers in the day: N = max{j ≥ 1 : Tj < τ}.
Lindley recurrence: W1 = 0 and Wj = max(0, Wj−1 + Sj−1 − Aj) for j ≥ 2.

W has cdf F (x) = P[W ≤ x ] = E[I(W ≤ x)] for x > 0.
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F (x) = E[I(W ≤ x)] =
E [I[W1 ≤ x ] + · · ·+ I[WN ≤ x ]]

E[N]
.

The density f (x) is the derivative of the numerator with respect to x , divided by E[N].

Cannot take the derivative inside the expectation. CMC: Replace I[Wj ≤ x ] by

Pj(x) = P[Wj ≤ x |Wj−1−Aj ] = P[Sj−1 ≤ x +Aj −Wj−1] = G (x +Aj −Wj−1) for x ≥ 0.

That is, we hide the service time Sj−1 of the previous customer.
For x > 0, we have P ′j (x) = dPj(x)/dx = g(x + Aj −Wj−1) and

f (x) =
1

E[N]

N∑
j=1

P ′j (x).

This is extended CMC: we condition on different information for different customers.
We replicate this for n days and take the average.

Other possibilities: Can also hide Aj for customer j , etc.
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Conclusion

I Combining a KDE with RQMC can improve reduce the MISE and sometimes improve its
convergence rate, even though our MISE bounds converge faster only when the
dimension is small.

I The CDE is an unbiased density estimator with better convergence rate for the IV and
the MISE. Combining it with RQMC can provide an even better rate, and sometimes
huge MISE reductions.

I What if we we cannot find G for which Assumption 1 holds and F ′(x | G) is easy to
compute?
Current work: density estimator based on likelihood ratio derivative estimation.

I Future: Density estimation for a function of the state of a Markov chain, using
Array-RQMC.

I Lots of potential applications.
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