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What this talk is about

Quasi-Monte Carlo (QMC) and randomized QMC (RQMC) methods have been studied
extensively for estimating an integral, say E[X ], or approximating a function from its
evaluation at a finite number of points.

How can we use them to estimate the entire distribution of X?
Here we will focus on estimating the density of X over [a, b] ⊂ R.

People often look at empirical distributions via histograms, for example.
More refined methods: kernel density estimators (KDEs).
Can RQMC improve such density estimators, and by how much?
Are there other types of density estimators than KDEs, that work better with RQMC?
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Setting

Classical density estimation was developed in the context where independent observations
X1, . . . ,Xn of X are given and one wishes to estimate the density f of X from that.

Here we assume that X1, . . . ,Xn are generated by simulation from a stochastic model.
We can choose n and we have some freedom on how the simulation is performed.

The Xi ’s are realizations of a random variable X = g(U) ∈ R with density f , where
U = (U1, . . . ,Us) ∼ U(0, 1)s and g(u) can be computed easily for any u ∈ (0, 1)s .

Can we obtain a better estimate of f with RQMC instead of MC? How much better?
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Density Estimation

Suppose we estimate the density f over a finite interval [a, b].

Let f̂n(x) denote the density estimator at x , with sample size n.

We use the following measures of error:

MISE = mean integrated squared error =

∫ b

a
E[f̂n(x)− f (x)]2dx

= IV + ISB

IV = integrated variance =

∫ b

a
Var[f̂n(x)]dx

ISB = integrated squared bias =

∫ b

a
(E[f̂n(x)]− f (x))2dx
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Density Estimation

Simple histogram: Partition [a, b] in m intervals of size h = (b − a)/m and define

f̂n(x) =
nj
nh

for x ∈ Ij = [a + (j − 1)h, a + jh), j = 1, ...,m

where nj is the number of observations Xi that fall in interval j .

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered at
0) and bandwidth h > 0 (horizontal stretching factor for the kernel). The KDE is

f̂n(x) =
1

nh

n∑
i=1

k

(
x − Xi

h

)
.
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KDE bandwidth selection: an illustration in s = 1 dimension

KDE (blue) vs true density (red) with RQMC point sets with n = 219:
lattice + shift (left), Sobol + 31-bit scramble (right)
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Asymptotic convergence with Monte Carlo for smooth f

For g : R→ R, define

R(g) =

∫ b

a
(g(x))2dx ,

µr (g) =

∫ ∞
−∞

x rg(x)dx , for r = 0, 1, 2, . . .

For histograms and KDEs, when n→∞ and h→ 0:

AMISE = AIV + AISB ∼ C

nh
+ Bhα .

C B α

Histogram 1 R(f ′) /12 2

KDE µ0(k2) (µ2(k))2 R(f ′′) /4 4
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The asymptotically optimal h is

h∗ =

(
C

Bαn

)1/(α+1)

and it gives AMISE = Kn−α/(1+α).

C B α h∗ AMISE

Histogram 1
R(f ′)

12
2 (nR(f ′)/6)−1/3 O(n−2/3)

KDE µ0(k2)
(µ2(k))2 R(f ′′)

4
4

(
µ0(k2)

(µ2(k))2R(f ′′)n

)1/5

O(n−4/5)

To estimate h∗, one can estimate R(f ′) and R(f ′′) via KDE (plugin).
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Asymptotic convergence with RQMC for smooth f
Idea: Replace U1, . . . ,Un by RQMC points.

RQMC does not change the bias.

For a KDE with smooth k , one could hope (perhaps) to get

AIV = C ′n−βh−1 for β > 1, instead of Cn−1h−1.

If the IV is reduced, the optimal h can be taken smaller to reduce the ISB as well
(re-balance) and then reduce the MISE.

Unfortunately, things are not so simple.

Roughly, decreasing h increases the variation of the function in the estimator. So we rather
have something like

AIV = C ′n−βh−δ

or IV ≈ C ′n−βh−δ in some bounded region.
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Elementary QMC Bounds (Recall)

Integration error for g : [0, 1)s → R with point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)s :

En =
1

n

n−1∑
i=0

g(ui )−
∫
[0,1)s

g(u)du.

Koksma-Hlawka inequality: |En| ≤ VHK(g)D∗(Pn) where

VHK(g) =
∑
∅6=v⊆S

∫
[0,1)s

∣∣∣∣∣∂|v|g∂v

∣∣∣∣∣ du, (Hardy-Krause (HK) variation)

D∗(Pn) = sup
u∈[0,1)s

∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣ (star-discrepancy).

There are explicit point sets for which D∗(Pn) = O((log n)s−1/n) = O(n−1+ε).
Explicit RQMC constructions for which E[En] = 0 and Var[En] = O(n−2+ε).
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Bounding the AIV under RQMC for a KDE
KDE density estimator at a single point x :

f̂n(x) =
1

n

n∑
i=1

1

h
k

(
x − g(Ui )

h

)
=

1

n

n∑
i=1

g̃(Ui ).

With RQMC points Ui , this is an RQMC estimator of E[g̃(U)] =
∫
[0,1)s g̃(u)du = E[f̂n(x)].

RQMC does not change the bias, but may reduce Var[f̂n(x)], and then the IV.

To get RQMC variance bounds, we need bounds on the variation of g̃ .

The partial derivatives are:

∂|v|

∂uv
g̃(u) =

1

h

∂|v|

∂uv
k

(
x − g(u)

h

)
.

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k .
By expanding via the chain rule, we obtain terms in h−j for j = 2, . . . , |v|+ 1.
One of the term for v = S grows as h−s−1k(s) ((g(u)− x)/h)

∏s
j=1 gj(u) = O(h−s−1) when

h→ 0, so this AIV bound grows in h as h−2s−2. Not so good!
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Improvement by a Change of Variable, in One Dimension
Suppose g : [0, 1]→ R is monotone. Change of variable w = (x − g(u))/h.

In one dimension (s = 1), we have dw/du = −g ′(u)/h, so

VHK(g̃) =
1

h

∫ 1

0

k ′
(
x − g(u)

h

)(
−g ′(u)

h

)
du =

1

h

∫ ∞
−∞

k ′(w)dw = O(h−1).

Then, if k and g are continuously differentiable, with RQMC points having D∗(Pn) = O(n−1+ε), we
obtain AIV = O(n−2+εh−2).

With h = Θ(n−1/3), this gives AMISE = O(n−4/3).

A similar argument gives

V 2
2 (g̃) =

1

h2

∫ 1

0

(
k ′
(
x − g(u)

h

)(
−g ′(u)

h

))2

du =
1

h3
Lg

∫ ∞
−∞

(k ′(w))2dw = O(h−3)

if |g ′| ≤ Lg , and then with NUS: AIV = O(n−3+εh−3).

With h = Θ(n−3/7), this gives AMISE = O(n−12/7).
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Higher Dimensions
Let s = 2 and v = {1, 2}. With the change of variable (u1, u2)→ (w , u2), the Jacobian is
|dw/du1| = |g1(u1, u2)/h|, where gj = ∂g/∂uj . If |g2| and |g12/g1| are bounded by a constant L,∫

[0,1)2

∣∣∣∣∂|v|g̃∂uv

∣∣∣∣ du =
1

h

∫
[0,1)2

∣∣∣∣ ∂2

∂u1∂u2
k

(
x − g(u)

h

)∣∣∣∣du1du2
=

1

h

∫
[0,1)2

∣∣∣∣k ′′(x − g(u)

h

)
g1(u)

h

g2(u)

h
+ k ′

(
x − g(u)

h

)
g12(u)

h

∣∣∣∣du1du2
=

1

h

∫ 1

0

∫ ∞
−∞

∣∣∣∣k ′′(w)
g2(u)

h
+ k ′(w)

g12(u)

g1(u)

∣∣∣∣ dw du2

=
L

h
[µ0(k ′′)/h + µ0(k ′)] = O(h−2).

This provides a bound of O(h−2) for VHK(g̃), then AIV = O(n−2+εh−4).

Generalizing to s ≥ 2 gives VHK(g̃) = O(h−s), AIV = O(n−2+εh−2s), MISE = O(n−4/(2+s)) .

Beats MC for s < 3, same rate for s = 3. Not very satisfactory. But only a bound!
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Empirical Evaluation with Linear Model in a limited region
Regardless of the asymptotic bounds, the true IV may behave better than for MC for pairs
(n, h) of interest. We consider the model

MISE = IV + ISB ≈ Cn−βh−δ + Bhα .

This model is only for a limited region of interest, not for everywhere, not necessarily
asymptotic. The optimal h for this model satisfies

hα+δ =
Cδ

Bα
n−β.

and it gives MISE ≈ Kn−αβ/(α+δ).

We can take the asymptotic α (known) and B (estimated as for MC).

To estimate C , β, and δ, estimate the IV over a grid of values of (n, h), and fit a linear
regression model:

log IV ≈ logC − β log n − δ log h.
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Model estimation

For each (n, h), we estimate the IV by making nr indep. replications of the RQMC density
estimator, compute the variance at ne evaluation points (stratified) over [a, b], and multiply
by (b − a)/n. We use logs in base 2, since n is a power of 2.

Validation

After estimating model parameters, we can test out-of-sample with independent simulation
experiments at pairs (n, h) with h = ĥ∗(n).

For test cases in which density is known, to assess what RQMC can achieve, we can compute
a MISE estimate at those pairs (n, h), and obtain new parameter estimates K̃ and ν̃ of model
MISE ≈ Kn−ν .
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Numerical illustrations

For each example, we first estimate model parameters by regression using a grid of pairs
(n, h) with n = 214, 215, . . . , 219 and (for KDE) h = h0, . . . , h5 with hj = h02j/2 = 2−`0+j/2.

For each n and each RQMC method, we make nr = 100 independent replications and take
ne = 64 evaluation points over bounded interval [a, b]. Also tried larger ne .

RQMC Point sets:

I MC: Independent points (Crude Monte Carlo),

I Stratification: stratified unit cube,

I LMS: Sobol’ points with left matrix scrambling (LMS) + digital random shift,

I NUS: Sobol’ points with NUS.
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Simple test example with standard normal density

Let Z1, . . . ,Zs i.i.d. standard normal generated by inversion, and

X =
Z1 + · · ·+ Zs√

s
.

Then X ∼ N (0, 1).

Here we can estimate IV, ISB, and MISE accurately.
We can compute

∫ b
a f ′′(x)dx exactly.

We take [a, b] = [−2, 2].
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Estimates of model parameters for KDE

ISB = Bhα, IV ≈ Cn−βh−δ, MISE ≈ κn−ν

We have B = 0.04754 with α = 4.

method MC Sobol + NUS

s 1 1 2 3 5 20

R2 0.999 0.999 1.000 0.995 0.979 0.993
β 1.017 2.787 2.110 1.788 1.288 1.026
δ 1.144 2.997 3.195 3.356 2.293 1.450
α 3.758 3.798 3.846 3.860 3.782 3.870

ν̃ 0.770 1.600 1.172 0.981 0.827 0.730
LGM 16.96 34.05 24.37 20.80 17.91 17.07

LGM = − log2(MISE) for n = 219.
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Convergence of the MISE in log-log scale, for the one-dimensional example
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Convergence of the MISE, for s = 2, for histograms (left) and KDE (right).
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Displacement of a cantilever beam (Bingham 2017)

Displacement D of a cantilever beam with horizontal load X and vertical load Y :

D =
4L3

Ewt

√
Y 2

t4
+

X 2

w4

where L = 100, w = 4, t = 2 (in inches), X , Y , and E are independent and normally
distributed with means and standard deviations:

Description Symbol Mean St. dev.

Young’s modulus E 2.9× 107 1.45× 106

Horizontal load X 500 100
Vertical load Y 1000 100

We want to estimate the density of D over [a, b] = [0.336, 1.561] (about 99.5% of density).
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Parameter estimates of the linear regression model for IV and MISE:

IV ≈ Cn−βh−δ, MISE ≈ κn−ν

Point set Ĉ β̂ δ̂ ν̂

KDE with Gaussian kernel, α = 4

Independent 0.210 0.993 1.037 0.789
Sobol+LMS 5.28E-4 1.619 2.949 0.932
Sobol+NUS 5.24E-4 1.621 2.955 0.932

Good fit: we have R2 > 0.99 in all cases.
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log2(IV) vs log2 n for cantilever with KDE.
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A weighted sum of lognormals

X =
s∑

j=1

wj exp(Yj)

where Y = (Y1, . . . ,Ys)t ∼ N (µ,C).

Let C = AAt. To generate Y, generate Z ∼ N (0, I) and put Y = µ + AZ.

We will use principal component decomposition (PCA).

This has several applications. In one of them, with wj = s0(s − j + 1)/s, e−ρ max(X − K , 0)
is the payoff of a financial option based on an average price at s observation times, under a
GBM process. Want to estimate density of positive payoffs.

Numerical experiment: Take s = 12, ρ = 0.037, s0 = 100, K = 101, and C defined
indirectly via: Yj = Yj−1(µ− σ2)j/s + σB(j/s) where Y0 = 0, σ = 0.12136, µ = 0.1, and B
a standard Brownian motion.

We will estimate the density of e−ρ(X − K ) over [a, b] = [0, 50].
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Histogram of positive values from n = 106 independent simulation runs:
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The RQMC bound in s = 12 dimension gives a worst rate than MC, but we observe a better
actual IV and MISE.
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Stochastic derivative of an estimator of F?

The density is f (x) = F ′(x), so perhaps we can estimate f (x) by the derivative w.r.t. x of an
estimator of F (x).

A simple candidate cdf estimator is the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x ].

However dF̂n(x)/dx = 0 almost everywhere, so this cannot be a useful density estimator!
We need a smoother estimator of F .
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Conditional Monte Carlo (CMC) for Derivative Estimation
Idea: Replace the indicator I[Xi ≤ x ] by its conditional cdf given filtered (reduced)
information G:

F (x | G) := P[X ≤ x | G]

where the sigma-field G contains not enough information to reveal X but enough to compute
F (x | G), and is chosen so that the following holds:

Assumption 1. For all realizations of G, F (x | G) is a continuous function of x which is
differentiable except perhaps over a denumerable set of points, and for which the derivative
F ′(x | G) = dF ′(x | G)/dx (when it exists) is bounded uniformly in x by some random
variable Γ having finite variance.

Theorem: F ′(x | G) is an unbiased estimator of f (x), with variance bounded uniformly in x .

Overall estimator with n iid replicates: f̂cmc,n(x) = 1
n

∑n
i=1 F

′(x | Gi ).

With this estimator, ISB = 0, so MISE = IV, which is rather easy to estimate.

Proposed by Asmussen (2018) for a sum of random variables.
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Application to the normalized sum of standard normals

We had

X =
Z1 + Z2 + · · ·+ Zs√

s

where each Zj ∼ N (0, 1). For CMC, we can leave out Zs , so G = (Z1, . . . ,Zs−1) and

F (x | G) = P[X ≤ x | Z1, . . . ,Zs−1] = P[Zs ≤ x
√
s − (Z1 + Z2 + · · ·+ Zs−1)]

= Φ(x
√
s − (Z1 + Z2 + · · ·+ Zs−1)).

The resulting density estimator is

F ′(x | G) = φ(x
√
s − (Z1 + Z2 + · · ·+ Zs−1))

√
s.

Assumption 1 is easily verified.
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d = 3 d = 20
MC Sobol+LMS Sobol+NUS MC Sobol+LMS Sobol+NUS

CMC
ν 1.019 2.116 2.094 0.988 0.961 0.982

LGM 21.36 40.81 40.65 19.27 19.58 19.54

KDE
ν 0.798 0.976 0.975 0.769 0.771 0.760

LGM 17.01 20.79 20.80 17.00 17.10 17.07

LGM = − log2(MISE) for n = 219.
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Cantilever beam

D =
4L3

Ewt

√
Y 2

t4
+

X 2

w4

where E , X , Y are normal r.v.’s. Want density over [a, b] = [0.407, 1.515].

For CMC, we can leave out E , i.e., take G = (X ,Y ). Then,

F (d | G) = P[D ≤ d | X ,Y ] = P

[
4L3

Ewt

√
Y 2

t4
+

X 2

w4
≤ d | X ,Y

]
= 1− Φ

 4L3

dwt

√
Y 2

t4 + X 2

w4 − µE

σE

 .

Taking the derivative w.r.t. d , we get

F ′(d | G) = φ

 4L3

dwt

√
Y 2

t4 + X 2

w4 − µE

σE

× 4L3

d2wtσE

√
Y 2

t4
+

X 2

w4
.
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Estimated MISE = Kn−ν and LGM = − log2MISE for n = 219:

MC Strat LMS NUS

CMC
ν 1.02 1.80 2.22 2.16
LGM 18.54 30.64 43.18 43.08

KDE
ν 0.81 0.89 0.94 0.96
LGM 15.12 18.08 21.33 21.35
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Example: A stochastic activity network
Gives precedence relations between activities. Activity k has random duration Yk (also length
of arc k) with known cumulative distribution function (cdf) Fk(y) := P[Yk ≤ y ].

Project duration T = (random) length of longest path from source to sink.

We want to estimate the density of T .
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Yk ∼ N(µk , σ

2
k) for k = 0, 1, 3, 10, 11, and Vk ∼ Expon(1/µk) otherwise.

µ0, . . . , µ12: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

Results of an experiment with n = 100 000.

T
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000

mean = 64.2

ξ̂0.99 = 131.8
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The SAN example, Sobol+NUS vs Independent points, summary for n = 219 = 524288.

Density
Independent points Sobol+NUS

m or h log2IV IV rate log2IV IV rate

KDE

0.10 -16.64 -0.999 -16.71 -1.006
0.18 -17.96 -0.999 -18.18 -1.015
0.32 -19.33 -0.998 -19.79 -1.035
0.43 -19.99 -0.998 -20.71 -1.064
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CMC for the SAN Example
Want to estimate the density of the longest path length T .

CMC estimator of P[T ≤ t]: F (t | G) = P[T ≤ t | {Yj , j 6∈ L}]

where L = {4, 5, 6, 8, 9} and Yj = F−1j (Uj). This estimator continuous in the Uj ’s and in t.
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To compute F (t | G): for each l ∈ L, say from al to bl , compute the length αl of the longest path
from 1 to al , and the length βl of the longest path from bl to the destination.

The longest path that passes through link l does not exceed t iff αl + Yl + βl ≤ t, which occurs with
probability P[Yl ≤ t − αl − βl ] = Fl [t − αl − βl ].

Since the Yl are independent, we obtain

F (t | G) =
∏
l∈L

Fl [t − αl − βl ].

To estimate the density of T , take the derivative w.r.t. t:

F ′(t | G) =
d

dt
F (t | G)

w.p.1
=

∑
j∈L

fj [t − αj − βj ]
∏

l∈L, l 6=j

Fl [t − αl − βl ].

Assumption 1 holds if the Fj are smooth enough, and then E[F ′(t | G)] = fT (t).

With MC, the IV converges as O(1/n) and there is no bias, so MISE = IV.

With RQMC, we observe a convergence rate near O(n−4/3) for the IV and the MISE.
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Estimated MISE = Kn−ν and LGM = − log2MISE for n = 219:

MC LMS NUS

CMC
ν 0.99 1.34 1.32
LGM 25.48 29.67 29.66
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Other examples

I Option pricing under GBM and under a VG process.

I Density estimation for a function of the state of a Markov chain, using Array-RQMC.

I More to come.
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Conclusion

I Both CMC and RQMC can improve the convergence rate of the IV and MISE when
estimating a density.

I With KDEs, the convergence rates observed in small examples are much better than the
bounds proved from standard QMC theory.
There are opportunities for QMC theoreticians here!

I The combination of CMC with RQMC for density estimation is very promising!
Lots of potential applications!
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