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Abstract

The energy model is a simple, biologically in-
spired approach to extracting relationships
between images in tasks like stereopsis and
motion analysis. We discuss how adding
an extra pooling layer to the energy model
makes it possible to learn encodings of trans-
formations that are mostly invariant with re-
spect to image content, and to learn encod-
ings of images that are mostly invariant with
respect to the observed transformations. We
show how this makes it possible to learn 3D
pose-invariant features of objects by watch-
ing videos of the objects. We test our ap-
proach on a dataset of videos derived from
the NORB dataset.

1. Introduction

The learning of invariant representations of objects has
been a long-standing research goal in machine learn-
ing and vision over many years. Among the multitude
of methods that have been proposed, the most com-
mon approach is to use transformation sequences (e.g.
Foldiak, 1991; Wiskott & Sejnowski, 2002) in order to
learn to discount variations in nearby frames. Since
object class typically does not change on a fast time
scale in natural videos, this leads to representations
that retain object identity and that discard within-
class variations (see, e.g., Wiskott, 2006, for a discus-
sion). Learning of complex cell models, such as inde-
pendent subspace analysis (Hyvärinen & Hoyer, 2000)
and related models, can be viewed as an alternative ap-
proach to achieving invariance. Complex cell models
typically learn invariances with respect to small, local-
ized translations by utilizing the invariance of subspace
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energies, computed from quadrature Gabor features,
to such translations (e.g. Hyvärinen et al., 2009).

Common to practically all approaches to learning in-
variance is that they utilize multiple views, typically
videos, of objects at training time, and still images at
test time. In this work, we explore an alternative ap-
proach to learning invariant representations by learn-
ing features that encode videos not images to represent
objects. Our approach thus utilizes videos for training
and for testing. We show how this makes it possible to
derive a very simple, biologically plausible, deep learn-
ing approach to extracting invariant features based on
the learning of subspace energies from videos.

In particular, we show that learning a 3-layer network
containing subspace energies at the second layer will
naturally learn both the transformations inherent in
the training data and a representation that is invari-
ant to those transformations. In contrast to classical
complex cell models, our approach is not invariant to
small, but also to large transformations, and it is in-
variant to transformations other than translation, such
as rotation, or changes in 3-D orientation of objects.

To explore the learning of invariant 3-D features of ob-
jects from data, we introduce a derivative of the NORB
data set (LeCun et al., 2004) consisting of videos of
objects transforming in 3-D.

1.1. Related work

Our work is related to the approach described in
(Hoyer & Hyvärinen, 2002) which is also based on
adding a third feature learning layer on top of a layer
of complex cell energy units. In contrast to that work,
our approach involves learning to encode transforma-
tions not still images. Furthermore, we show how the
second layer changes its semantics as a result of adding
the third layer, and how this allows us to learn invari-
ant features. Because of this, learning of all layers has
to be performed jointly in our model, whereas related
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complex cell models, such as (Hoyer & Hyvärinen,
2002), are trained greedily, layer-by-layer.

A prerequisite to a representation which is invari-
ant to 3-D transformations is some degree of under-
standing of the 3-D structure of objects. Our ap-
proach may therefore be viewed also as a way to
learn mid-level features of objects. Learning mid-
level features using complex cell like models is also
discussed in (Cadieu & Olshausen, 2011; Zou et al.,
2012). In contrast to that work, our method is some-
what simpler, because it does not utilize an explicit
polar decomposition of features. On a more techni-
cal level, (Cadieu & Olshausen, 2011) and (Zou et al.,
2012) learn mid-level features by utilizing the transfor-
mation invariance of subspace norms, whereas our ap-
proach makes use of the invariance of phase-derivatives
instead. We therefore utilize videos not still images to
extract representations, even at test-time.

Our model makes use of the close relationship be-
tween the cross-correlation (or “gating”) view (e.g.,
Arndt et al., 1995; Fleet et al., 1996) and the oriented
energy view (Adelson & Bergen, 1985) of motion anal-
ysis. In this work, we show that the gating perspective
can be viewed as a special case of the energy model,
when using a denoising autoencoder (Vincent et al.,
2008) with a particular noise-process for learning.

2. Complex cells and subspace pooling

Consider a short video sequence ~X ∈ R
N consisting

of T frames, ~x1, . . . , ~xT , (~xi ∈ R
M , i = 1, . . . , T , with

M = N/T ) which are related by the repeated applica-
tion of a transformation L, so that ~xt = Lt~x1. Most
transformations between frames in a natural video can
be represented by such a linear transformation in pixel
space. L could, for example, take the form of a per-
mutation matrix which moves any pixel xi in xt to any
other position xj in xt+1.

2.1. Translation and Fourier components

Videos showing only spatial translations in time can
be represented naturally using the phase components
of the Fourier spectra of the images across time: the
Fourier components will show phase shifts, which to-
gether uniquely identify the translation direction and
amount. The amplitude spectra, in contrast, will be
constant, and so they constitute a representation that
is invariant with respect to translation. The reason
why the temporal evolution of the Fourier spectrum is
a natural way to represent translations is that Fourier
components (sines and cosines) are the eigenvectors of
translations (e.g., Gray, 2005). For the same reason,

the Fourier amplitude spectrum is invariant to trans-
lation.

The well-known energy model of complex cells
(Adelson & Bergen, 1985) is an example of an applica-
tion of this principle to the extraction of motion from
videos: the energy model computes projections onto
Fourier components in the form of simple cell responses
(or localized Fourier components if one uses Gabor
features), and subsequently measures phase changes
in the subspaces spanned by these components. The
whole set of phase changes across multiple spectral
components constitutes a population code of motion.
The same line of thought applies to estimation of
binocular disparity (e.g. Fleet et al., 1996), because it
also amounts to the estimation of local translations.

In real world data, however, not all images are repre-
sented equally well by all Fourier frequencies and ori-
entations. If some Fourier components are not present
in an image sequence, then it is not possible to ex-
tract any motion from that component. The absence
of Fourier components of a given orientation makes it
impossible to recover motion in that direction. Hori-
zontal shifts, for example, are undetectable in images
containing no horizontal Fourier components. The in-
ability to detect motion as a result of missing Fourier
components is typically referred to as the aperture

problem in vision. In this work, we discuss how the
aperture problem is intimately related to the task of
learning representations, and how this relationship al-
lows us learn invariant features from data.

To this end, first note that the partial absence of
spectral components typically has an adverse affect
on the analysis of motion, because it entails content-

dependence: a population code of phase deltas en-
coding some observed motion will be different for any
two images that contain different spectral components.
That is, the same transformation applied to two differ-
ent images will give rise to different code vectors to the
degree that the images have different spatial frequency
content.

In this work we shall show how using multi-layer pool-
ing allows us to utilize this content-dependence, by
learning features that are both invariant to learned
transformations and selective to other properties of the
inputs.

2.2. Complex cell video encodings

To learn about motion from videos, it is common to
use complex cell models, which sum over two squared
linear (“simple cell”) responses (cf., Figure 1 (a)) as-
sumed to be in quadrature (for example, sines and
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cosines). The reason is that the transformations may
be decomposed into rotations in two-dimensional sub-
spaces (e.g. Memisevic, 2012).

When the input data is a video sequence of T frames
( ~X = [~x1, . . . , ~xT ]), then the response of a vector ~a of
complex cell responses can be written:

~a = Q
(

W ~X
)2

(1)

where W ∈ R
F×N denotes F feature vectors ~W ∈

R
N stacked side-by-side. Each feature vector spans

a whole video, so it is composed of frame features

~w
(f)
s , each of which spans a single frame. The ma-

trix Q ∈ R
(F/2)×F is a band-diagonal pooling ma-

trix with entries Qi,2i = 1 and Qi,2i+1 = 1 and zero
elsewhere. It pools over the elementwise products of
(W~x) · (W~x) = (W~x)2 and remains constant during
learning. When trained on natural images, the two
features added together by Q tend to turn into Ga-
bor features that are approximately 90 degree out-of-
phase, so we refer to Q as quadrature pooling matrix.

A single aq may also be written

aq =
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)2
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(
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)

·

(
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)
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)
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(
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)

·

(
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)

+
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2
∑

f=1

(

~wT
fs~xs

)2
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where ~wfs ∈ R
M , for s = 1, . . . , T , are the components

of ~Wf , which span the individual frames.

The decomposition in Eq. 2 (rhs) follows from
the binomial identity (see, e.g., Fleet et al., 1996;
Memisevic, 2012). It shows that the complex cell
response consists of two parts: The computation of
relative 2-D phase-angles, that take the form of 2-D
inner products between all pairs of projected frames
(first sum); the computation of the norms of the
projected frames in the 2-D-subspaces (second sum).
When both frames and frame features are contrast-
normalized, then the complex cell response is an en-
coding of motion. For example, if frame features
~wfs, ~wft are phase-shifted Fourier components, then
the set of aq encode translations in the form of phase-
deltas between the projections of multiple frames (e.g.,
Fleet et al., 1996; Qian, 1994; Memisevic, 2012).

Because of the aperture problem, the representation
of motion depends on the Fourier amplitudes of the

input: a frequency component that is not present in
the images turns off the response aq, even if the mo-
tion is present in the video. As a result, the aq show a
dependency on image content through the Fourier am-
plitudes of the individual images. A solution is to let
complex cells pool not only over quadrature features
but over multiple subspaces to reduce this dependency
(e.g., Fleet et al., 1996).

Formally, this amounts to replacing the quadrature
pooling matrix Q in Eq. 1 by a full pooling matrix
P that can be learned from data along with the fea-
tures W . See Figure 1 (b) for an illustration. Pool-
ing across multiple components aq yields motion fea-
tures, ~m, that are robust against the aperture problem
because any motion affects multiple frequency com-
ponents. Translation, for example, is visible in all
Fourier frequencies whose orientation is the same as
the direction of translation, and it is also visible in
other, nearby orientations. P reduces the dependen-
cies on image content by pooling across multiple 2-d
subspaces. The pooled motion features ~m are also re-
ferred to as “mapping units” in the literature.

Various parameter estimation schemes have been
used to learn complex cell models to encode
videos (both with pooling across subspaces and
without). They include maximizing sparsity
(Hyvärinen & Hoyer, 2000; Le et al., 2011), maxi-
mizing likelihood (Memisevic & Hinton, 2010), sub-
space clustering (Bethge et al., 2007), predictive
sparse coding (Memisevic, 2011), minimizing recon-
struction error while enforcing amplitude constancy
across frames (Cadieu & Olshausen, 2011; Zou et al.,
2012), or training the closely related bilinear models
(e.g., Rao & Ruderman, 1999; Olshausen et al., 2007;
Miao & Rao, 2007; Grimes & Rao, 2005).

2.3. Generalizing the aperture problem

Learning features from data instead of hard-coding
them was shown to extend the applicability of com-
plex cell models beyond Fourier and Gabor compo-
nents and beyond modeling translations. In particu-
lar, there exist features, W , which can represent any
orthogonal image transformations that form a com-

mutative group (e.g., Memisevic, 2012; Lee & Soatto,
2011). Since orthogonal transformations are uniquely
determined by a set of rotations in their eigenspaces
and since the eigenspaces are shared among commut-
ing transformations, extracting transformations from
images amounts to extracting rotation angles in the
eigenspaces. This makes it possible to learn video
feature that encode rotations, local shifts or other,
more complex motions. When training complex cell
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Figure 1. (a) Complex cell models, such as independent subspace analysis (ISA), extract energy in the invariant subspaces
of transformations. (b) Due to the aperture problem, pooling across multiple subspaces is necessary to learn transforma-
tions from data. (c) By separating pooling across subspaces from pooling within subspaces we obtain features that are
transformation invariant and content-dependent at the same time. (Right-most panels) In practice, top-level codes of
simple motions (top panel) show more structure than intermediate level codes (bottom panel), because top-level codes do
not vary as much when example images change (see text for details).

models on natural videos, it can be shown that the
models decompose these into approximately group-
structured components such as Gabor features (e.g.
Cadieu & Olshausen, 2011; Memisevic, 2012). This al-
lows them to learn complex motion patterns for tasks
like activity recognition (Le et al., 2011; Taylor et al.,
2010). It is important to note that, even in these more
general settings, the aperture problem holds. In other
words, motion estimates in the form of a population
code of complex cell features, aq, will depend on how
well individual images are aligned with each subspace,
unless across-subspace pooling is used to remove (or
at least alleviate) that dependency.

2.4. Subspace segregation

Although the population code ~a =
(

aq
)F/2

q=1
is not an

optimal representation of motion, it can be a good rep-
resentation of object identity : Since it is affected by the
aperture problem, it is sensitive to any transformation
that the model was not trained on. By definition, these
transformations change the magnitude of all subspace
projections and thus change both the inner products
and the norms in the subspaces.

More importantly, ~a will nevertheless tend to be pose-

invariant, because a transformation applied to all
frames of a video changes only the phase-angles of
the subspace projections. In other words, the learned

transformations, by definition, leave subspace norms
and the relative phase-deltas between the projections
constant.

Here, we suggest extracting these pose-invariant (but
otherwise object sensitive) features using two-layer
pooling as follows (cf., Figure 1 (c)): We use two-
dimensional subspaces, as prescribed by the geometry
of orthogonal transformations, and we use a separate

pooling layer to overcome the aperture problem. For-
mally, we introduce a across-subspace pooling matrix
S ∈ R

D×F/2 of dimension F/2 × D, and define a D-
dimensional video code

~m = S~a (3)

The components of ~a are the same as in Eq. 1 (cf., Fig-
ure 1). This allows the learning of content-independent
motion components, while leaving subspace features
accessible to other pathways, such as those involved in
object recognition.

As the lower-level features ~a encode image content via
the aperture problem, we shall call them “aperture
features” in the following. In the special case of trans-
lations, aperture features are similar to the amplitude
spectrum. But they can learn other, more complex
types of transformation as we shall show. For robust-
ness, it can make sense to apply an elementwise non-
linearity to ~m in classification tasks, which we do in
our experiments below.
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It is interesting to note that performing invariant
recognition by using a linear classifier on the aperture
features amounts to computing a linear combination,
thus it is a form of pooling, too. Computing a repre-
sentation of motion (Eq. 3) amounts to a different kind
of pooling over the same features. That way, aperture
features provide a multi-view “substrate” for objects,
which encodes information about both, transforma-
tions and invariances. Multiple higher-level pathways
can selectively extract this information through differ-
ent forms of pooling.

2.5. Learning

Training the model (Figure 1 (c)) seems hard at
first sight because of the presence of squaring non-
linearities. However, there is a wide variety of complex
cell models as discussed is Section 2.2, which can learn
in the presence of these. Here, we use the approach
described by (Memisevic, 2011), who show that a de-
noising autoencoder (Vincent et al., 2008) can learn in
the presence of such squaring non-linearities by train-
ing to reconstruct multiple noisy copies of the input
from each other.

More specifically, consider a decoder corresponding
to the encoder network shown in Figure 1 (c). We
use “tied weights”, so the decoder parameters are the
transpose of the encoder parameters. By combining
Eqs. 1 and 3, and writing the square in Eq. 1 as a
product, we may write the encoder activation in the
form

~m = SQ
(

W ~X
)

·

(

W ~X
)

(4)

where · denotes elementwise multiplication. This
shows that we can interpret the encoder as a three-
layer linear autoencoder SQW ~X whose second layer
is gated (multiplied elementwise) by another projec-

tion of the input, W ~X. Likewise, we can define the
decoder as

~Xrec = WT
(

W ~X
)

·

(

QTST ~m
)

(5)

which is another three-layer linear network, whose
next-to-last layer is again gated by W ~X. In con-
trast to a standard denoising autoencoder, the input
occurs twice in both the encoder and decoder. Using
independent (factorial) noise as the corruption process
(Vincent et al., 2008) thus implies that the two copies

of ~X have to be corrupted independently for training
the model (see also, Memisevic, 2011).

Formally, we thus generate two noisy copies ~Xnoise1,
~Xnoise2 for each training case ~X and train the model by
minimizing the reconstruction error that results from
reconstructing one noisy copy of the input from the

other:

(

~Xnoise2 −WT
(

W ~Xnoise1

)

·

(

QTSTsigmoid(~m)
)

)2

(6)
with

~m = SQ
(

W ~Xnoise2

)

·

(

W ~Xnoise1

)

(7)

Since gating is symmetric, one may also switch the
roles of ~Xnoise1 and ~Xnoise2 for each training example
in Eqs. 6 and 7, add up the two resulting costs.

There are many kinds of noise-process one can use for
training denoising autoencoders (Vincent et al., 2008).
In our experiments we use “zero-mask” noise which
amounts to independently setting to zero a certain
fraction (typically 50% in our experiments) of the com-
ponents of the inputs (Vincent et al., 2008).

Rather than reconstruction one noisy copy of the im-
age from another noisy copy in Eq. 6, one may also
reconstruct the original input. We experimented with
both approaches in practice and did not observe a sig-
nificant difference across any of these approaches.

2.6. Relationship with factored bilinear models

Computing a weighted sum of squared filter re-
sponses is closely related to factored bilinear mod-
els, such as the factored gated Boltzmann machine
(Memisevic & Hinton, 2010). One can show that both
squaring non-linearities and factored bilinear models
encode relationships between images by recovering ro-
tation angles in the invariant subspaces of the trans-
formation class (Memisevic, 2012; Fleet et al., 1996).

It is interesting to note that we can recover the gated
autoencoder (Memisevic, 2011) as a special case from
Eqs. 6 and 7 using a particular corruption process:
consider a video consisting of only two frames. Now
define ~Xnoise1 as the input video with the first frame
blanked out (set to zero), and ~Xnoise2 as the input
video with the second frame blanked out. Inference
during learning (Eq. 7) now amounts to multiplying
the filter responses from two frames, and reconstruc-
tion amounts to multiplying filter responses from one
frame to reconstruct the other. Both these operations
are exactly the same as as in a factored bilinear model
(e.g. Memisevic & Hinton, 2010; Memisevic, 2011).

An illustration of features learned using the gating ap-
proach is shown in the two right-most panels in Fig-
ure 1 (c). They show subsets of the mapping units
~m computed for test-data after training the model on
videos showing 3-D rotations of objects. The figure
shows that top-level units are more structured and less
noisy than the intermediate level units, which is con-
sistent with the fact that the data set consists of many
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Figure 2. Left-to-right: Example subset of the mnistrot data set; similarity matrix for 100 example digits (10 in each
class); similarity matrix for images

different objects which are transformed in a small num-
ber of ways (rotations in 3-D) For details, see Section 3.

3. Learning invariant features from

videos

3.1. Learning rotation invariant features

We performed a quantitative comparison to evaluate
the utility and the degree of invariance of the aperture
features. We trained the three-layer model (Figure 1
(c)) using 2000 video features that are pooled into 1000
aperture features and subsequently into 200 mapping
units. For training, we used videos of length 2 show-
ing rotations of random dot images to learn rotation-
invariant aperture features.

To test the model used the mnistrot data set described
in (Larochelle et al., 2007). The data set consists of
60000 training images and 12000 test images showing
rotated MNIST digits of size 28× 28 pixels. Some ex-
ample images are shown in Figure 2 (left). The two
right-most plots in the figure show the cosine-similarity
between aperture features trained on rotations and raw
images for a random subset of 100 images (10 from
each class). They demonstrate that aperture features,
although not trained on digits, are better at capturing
the similarity structure inherent in the data, as rep-
resentations of digits from the same class tend to be
more similar than representations of digits from differ-
ent classes.

Figure 3 shows classification error rates for several
training set sizes, obtain using raw images (blue), sub-
space features trained with a gating model (Memisevic,
2012) (dark blue), and subspace features trained with
an energy model (black). We used logistic regres-
sion to predict digit class from the aperture features.
On the images, we tried logistic regression and k-

Figure 3. Classification error rates on mnistrot.

nearest neighbors, and we found that k-nearest neigh-
bors works best. The number of neighbors, as well as
weight-decay for logistic regression are determined us-
ing cross-validation. The figure shows that aperture
features based on subspace norms perform best, and
clearly outperform raw digits. Note that aperture fea-
tures were trained on rotating random dot images, not
digits.

3.2. The “NORBvideos” data set

To evaluate our approach, and to facilitate ex-
perimentation with learning-based 3-D invari-
ance, we created a data set of objects that
rotate in 3-D. The data set is available at
www.iro.umontreal.ca/~memisevr/aperture

The data set is derived from the NORB data set
(LeCun et al., 2004), which consists of images of ob-
jects shown from various viewpoints (by changing az-

www.iro.umontreal.ca/~memisevr/aperture


Learning invariant features by harnessing the aperture problem

Figure 4. Example videos and extracted features. Left:
A random selection of videos from the training set. In
each frame we get a view from a different angle, with vari-
ous degrees of change. Right: Samples of the filters after
training.

imuth and camera elevation) and under various light-
ing conditions. Each object belongs to one of 5
classes (four-legged animals, human figures, airplanes,
trucks, and cars), and to one of 9 instances per class.
From the NORB data, we generate video sequences
that show “fly-overs” of each object by incrementally
changing viewpoints, while maintaining the same ob-
ject class, instance and lighting. We generate 109350
videos for training, using only NORB object instances
1 through 8 and 12150 videos for testing, using in-
stance 9. This ensures that the sets of objects shown
in the training and test sets are disjoint. Some exam-
ples are shown in Figure 4 (left).

All images are PCA-whitened, retaining 95% of the
variance, and subsequently projected onto a basis
learned using a contractive autoencoder (Rifai et al.,
2011) with a complete basis. We abbreviate the result-
ing “autoencoder sparse coding” representation ASC
in the following. To learn mid-level features of 3-
D structure, we concatenate the preprocessed images
to obtain videos of 5 frames. Note that a subset of
the transformations in this data set are 2-D rotations,
since for some views the rotation angle will be parallel
to the image plane.

3.3. Learning a 3-D invariant representation

To test complex cell video features, we used the au-
toencoder described in Subsection 2.4 with 2 frames,
1000 filters, 500, intermediate-level units and 100
mapping units. We trained the model using “gat-
ing” noise (cf., Section 2.6). Figure 4 (right) shows
that some features resemble a circular Fourier basis
(Memisevic & Hinton, 2010; Bethge et al., 2007), that
can encode 2-D rotations, while others seem to be re-
sponsible for encoding out-of-plane rotations. Many
filters look distinctly different than 2-D rotation fil-
ters.

We use analogy making as a way to assess qualita-
tively if the model can extract 3-D structure from the
data: given two source images ~xsource and ~ysource, we
infer the top-level poolings. Clamping a different in-
put image ~xtarget and using the decoder of the model
then allows us to infer a prediction ~ytarget based on the
transformation seen in the source image pair (see, e.g.
Memisevic & Hinton, 2010).

Figure 5 (bottom right) shows output images from
a random subset of target plane images taken from
the test data, not seen during training. Source in-
put and output images, as well as target input im-
ages, are shown on the top left, top right, and bottom
left, respectively. The figure shows that the model is
able to infer the correct transformation in most (not
all) cases. More importantly, the correctly inferred
transformations indicate that the model correctly in-
fers some aspects of the 3-D structure of the test data
to produce output images of the right shape (cf., for
example, third from the right, top row).

3.4. Quantitative evaluation

We compared the representation from our model with
the autoencoder (ASC) features on single frames by
training a logistic regression classifier on the inferred
representations. Since aperture features should tend
to be invariant to 3-D transformations by design, we
expect them to perform better than image features,
in particular on small training set sizes. We use as
training, validation and test data sets using the NORB
object instances 0 − 4, 5 − 8, and 9, respectively (cf.,
LeCun et al., 2004). This makes it possible to obtain a
sufficiently large training set for learning features, and
still a sufficiently large test set of about 12000 videos
to obtain significant results. Only the training subset
is used for learning features. We learn features on the
full 5-frame videos using the independent noise across
all frames (cf., Section 2.5) Figure 6 shows classifi-
cation results using regularized logistic regression on
various training set sizes. We cross-validate the regu-
larization parameter on the training subset. The figure
shows that aperture features significantly outperform
the ASC features, as well as classification based on
mapping units. More importantly, classification per-
formance is much more consistent as the training set
size gets very small. Both ASC and aperture features
perform much better than random, which is 20% cor-
rect in this data. The plot also shows that representing
objects using videos improves recognition performance
both over images in isolation and over videos consist-
ing just of pairs of frames.
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Figure 5. Example analogies using random test data. Left-to-right, top-to-bottom: Source input images, source
output images, target input images, target output images rendered by the model. Target output images are generated by
inferring the transformation from objects in the images shown on the top, and applying the transformation to the images
on the bottom-left.

Figure 6. Classification performance for “NORBvideos”
object recognition.

4. Discussion

One of the defining properties of a 3-D model is that it
is a representation that is invariant to 3-D rotations.
Both theory and experiments suggest that subspace
energies computed from short videos are capable of
providing a representation from which such a model
can be easily derived, for example through pooling.
Our work shows that one way to learn suitable sub-
space energies is by making use of a twist on deep

learning, where adding a layer is not used to learn
more abstract features but to change the meaning of
a lower layer of the model.

Our work parallels some recent work in computer vi-
sion on learning features for recognition using videos
(e.g., Lee & Soatto, 2011). A common finding in this
line of work is that current object recognition bench-
marks are somewhat unrealistic, because they provide
training data in the form of still images not videos.
Unlike practically all common object recognition sys-
tems that are based on local descriptors, humans have
no problem distinguishing a picture of a chair from a
real chair, and one of the reasons for this is probably
that humans learn about objects not from still images
but from multiple views of the objects (as well as from
interacting with the objects).
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