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Abstract

Estimation of binocular disparity in vision systems is typically based on a match-
ing pipeline and rectification. Estimation of disparity in the brain, in contrast, is
widely assumed to be based on the comparison of local phase information from
binocular receptive fields. The classic binocular energy model shows that this re-
quires the presence of local quadrature pairs within the eye which show phase- or
position-shifts across the eyes. While numerous theoretical accounts of stereopsis
have been based on these observations, there has been little work on how energy
models and depth inference may emerge through learning from the statistics of
image pairs. Here, we describe a probabilistic, deep learning approach to model-
ing disparity and a methodology for generating binocular training data to estimate
model parameters. We show that within-eye quadrature filters occur as a result
of fitting the model to data, and we demonstrate how a three-layer network can
learn to infer depth entirely from training data. We also show how training en-
ergy models can provide depth cues that are useful for recognition. We also show
that pooling over more than two filters leads to richer dependencies between the
learned filters.

1 Introduction

To infer 3-dimensional structure from two or more images, it is necessary to establish which points
in the different images depict the same 3-D location. There are at least two ways to approach this
task: 1.) For each position in one image find a nearby matching point in the other image using some
measure of similarity between local image patches (e.g. [23]). 2.) For each position in both images,
extract features that describe phase and frequency content of the region around that point, and read
off the phase difference across the two images from the set of filter responses.

While the first approach is more common in practice, the second is more plausible biologically, as
it does not require loops over local patches. The most well-known account of phase-based disparity
estimation is the binocular energy or cross-correlation model (e.g. [17], [5], [19]). In its most basic
form, this model states that local disparities are encoded in the sum of the squared responses of
two neurons, each of which has a binocular receptive field. Each binocular receptive field, in turn,
shows a position-shift across the two eyes. Between them the two receptive fields show a quadrature
relationship (within each eye). It can be shown that the position-shift across the eyes allows the
energy model to encode local disparity, while the quadrature relationship within each eye allows it
to be independent of the Fourier phase of the local stimulus [19, 4]. The requirement to combine
exactly two quadrature pairs to estimate disparity has been challenged in favor of more complex
models that pool over a larger set of phases and frequencies in roughly the same orientation [5]. In
the monocular case, the presence of quadrature pairs itself has also been challenged in favor of the
presence of additional inhibitory connections with roughly orthogonal orientation [21].
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The energy model is widely accepted as a plausible standard model for stereopsis. However, in stark
contrast to standard (monocular) receptive field learning and sparse coding (e.g. [10]), there has been
little work on how the model may emerge from looking at training data, and even less work on how
it may be applied in any real-world scenario. Here we describe an approach to learning local phase
relationships between images from data. Our idea is based on the observation that many biological
vision systems, and also many engineered systems, perform depth perception either with a fixed
stereo rig that does not change over time, or by fixations on locally approximately smooth surfaces
[13]. In both cases, the statistics of the relationship between left and right view are governed almost
exclusively by variations in depth across a scene, raising the question whether it is possible to learn
this relationship from data — and depth or disparity information with it.

1.1 Related Work

Some work on sparse coding in the context of depth estimation has been reported in the past. [27]
apply sparse coding techniques to disparity and depth maps and show how this makes it possible to
denoise the disparity estimates. Here, we consider the different task of learning to relate the sparse
codes of two image patches. As we shall discuss, this requires multiplicative interactions between
the codes and thus conventional sparse coding techniques do not apply.

Learning to encode binocular, as well as temporally related, image pairs has been considered using
various conventional sparse coding techniques applied to the concatenation of the two images [10].
An overview and some examples are given in [10]. However, as we review and confirm experimen-
tally below, hidden variables are dependent on the Fourier phase of the stimulus in this type of model
and thus cannot encode disparity well.

Recently, several bi-linear (and non-linear) methods to learning image relations have been proposed
(for example, [18], [16], [24], [28], [6]). Interestingly, it has been observed that many of these
models tend to encode global transformations, including global shifts over a whole patch well, but
do not tend to develop localized receptive fields (see, for example, [28], [16]). As a result, these
methods have been applied predominantly to modeling global image- or patch-transformations (such
as affine). We find that training on whitened data is crucial to be able to learn local transformations.
A similar observation has been made by [9] who describe how phase-invariant filters can emerge
when training an energy model on shifted images.

[26] also describe an approach to stereo sparse coding. Our work differs from theirs in that it is not
based on explicitly modeling the depth-induced geometric relationships between images, but rather
on learning such relationships from data.

2 Learning a Binocular Cross-Correlation Model

Given a pair of binocular (“left” and “right”) image patches, IL(x) and IR(x), at position x, the task
of depth inference amounts to estimating the position shift that each pixel in IL has to undergo in
order to move to its representation in IR. It is often assumed, for simplicity, that IL(x) = IR(x−d),
that is, the right patch is a shifted version of the left patch [5] with some offset d. A more realistic
assumption is that IL(x) is an affine transformation of IR(x), as this allows for modeling locally
slanted, rather than constant-distant, surfaces [7]. We make this assumption in this work.

One way to obtain an estimate of the disparity at x is by computing the responses of Gabor functions
f0L(IL(x)) and f0R(IR(x)) in the left and right patch, respectively, which are tuned to the same
frequency and orientation, and which differ only with respect to their phases and/or exact positions.
We shall abbreviate the responses f0L(x) and f0R(x).

The product p0 = f0L(x) · f0R(x) will tend to be large for patch pairs that are shifted by exactly the
amount that aligns the filters. However, since the product (much like the sum) will also depend on
the content of the patches, p0 is not a good estimate of disparity [19].

It is possible to reduce that dependency, however, by adding two further Gabor filters f1L(x) and
f1R(x), which are in quadrature relationship with f0L(x) and f0R(x), respectively ([19, 5]). Now, the
sum of the two products

c(x) = f0L(x) · f0R(x) + f1L(x) · f1R(x) (1)

2



Figure 1: Left: Schematic representation of the binocular Boltzmann machine, resembling the basic
disparity cross-correlation model. Each latent variable dk receives activation from the product of
two pairs of filters (f0Lk, f

0
Rk) and (f1Lk, f

1
Rk). Right: Example training data: From top to bottom:

Row 1, row 2 and row 3 show rendered image planes for the left and right camera, where in row 3
the right camera has been rotated by 45◦ around the z axis. These rendered images are based on the
depth maps shown in row 4 and a randomly selected texture map from the Berkeley Segmentation
Database [14]. Depth maps are coded as gray value images, where white denotes depth dmin = 1
(closer to the camera) and black dmax = 6 (farther away from the camera).

is proportional to cos(φLR), where φLR is the angle (in 2d) between the 2d-projection of the left and
right image patch, respectively, onto each quadrature pair. Since the cos function is maximal when
its argument is zero, the response, c(x), is maximal, when the quadrature filters are able to exactly
align the patches.

The idea of using two quadrature pairs to detect disparity is known as the binocular cross-correlation
model of disparity (e.g. [5, 2]). Instead of computing c(x) using two products (Eq. 1), one can
equivalently compute it implicitly as the sum (f0L(x) + f0R(x))

2 + (f1L(x) + f1R(x))
2, which will

be the same up to four additional square terms that do not change the meaning of c(x) if images are
contrast normalized [5]. This model is known as the binocular energy model [17].

Energy models do not require explicit products, so they are sometimes preferred over Eq. 1. How-
ever, efficient learning methods exist for the cross-correlation model, and they permit inhibitory
connections, as we shall discuss. In general, the question which form is more plausible biologically
has not been settled nor has the question whether squaring of filter components can be achieved
more plausibly by a suitable transfer function or by local products [15].

[5] among others suggested that performing disparity estimation based on exact quadrature compo-
nents can be suboptimal. They argue that pooling over more than a pair is more appropriate due to
the presence of discontinuities of the Gabor phase differences across different scales (i.e. frequen-
cies). [21] describe a monocular model, which also provides further evidence in support of this
argument. Their approach furthermore suggest that besides pooling, inhibitory connections may
improve the estimates and thereby the performance of the model.

2.1 Disparity as a Latent Variable

A typical cross-correlation/energy model consists of a set of K left quadrature filters f0Lk, f
1
Lk and

K corresponding right filters f0Rk, f
1
Rk, with k = 1, . . . ,K. The filters are chosen, such that they

show various phases, positions and frequencies [5, 19, 22].

In any such system, disparity will manifest itself as a pattern of matching filter responses, where,
due to smoothness, similar Gabor-pairs will typically show similar responses, and furthermore, a
change in one Gabor parameter, such as frequency or phase, can be offset to some degree by an
opposite change in another parameter, such as position. [5] demonstrate how these ambiguities can
lead to instabilities in disparity estimates and hypothesize that any phase-based disparity estimate
should involve pooling over multiple energy/cross-correlation units.

With this prospect in mind, we define a probabilistic model of disparity as follows: We introduce
binary latent variables dk (k = 1, . . . ,K) each of which encodes the probability that an associated
quadrature pair (f0Lk, f

0
Rk), (f1Lk, f

1
Rk) constitutes a match. As such, each instantiation of the set of
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Figure 2: Filters learned from rectified cameras (left) and rotated cameras (right).

latent variables can be thought of as a population code, that represents the observed disparity. In the
following, we shall stack the set dk of latent variables in the vector d.

Similar to [16, 20] we can then define the joint probability distribution over patch-pairs and disparity
variables using the “Boltzmann” distribution1

p (IL, IR,d) =
1

Z
exp

(∑
k

dk
(
f0Lk(IL)f

0
Rk(IR) + f1Lk(IL)f

1
Rk(IR)

))
, (2)

with Z =
∑
d

∑
IL,IR

exp

(∑
k

dk(f
0
Lk(IL)f

0
Rk(IR) + f1Lk(IL)f

1
Rk(IR))

)
. (3)

Under this model, the conditional probability over disparities p(d|IL, IR) is given by

p(d|IL, IR) =
∏
k

1

1 + exp (− (f0Lk(IL)f
0
Rk(IR) + f1Lk(IL)f

1
Rk(IR)))

. (4)

The model is a Boltzmann machine [8]. More specifically, it is a type of Boltzmann machine mod-
eling pairs [24]. Training amounts to finding model parameters (filters) that maximize the average
log-probability (log p(IL, IR) =

∑
d p(IL, IR,d)) for a set of training image pairs, (IL, IR). Like

in similar models one can use gradient-based optimization and contrastive divergence for training
[8, 24], or train the model like an auto-encoder or using score-matching [25, 10]. In contrast to recent
work on higher-order restricted Boltzmann machines [20], here it is not necessary to constrain the
parameters to be positive. In fact, we can allow for inhibitory connections from the filter responses
to disparity codes as we shall show. During inference, each latent variable receives activity from ex-
actly two products of matched filter-responses (cf. Eq. 4). Figure 1 (left) shows the corresponding
graphical model. One can incorporate pooling as suggested by [5], by replacing the “energy” inside
the exp-function (Eq. 2) with the more flexible form∑

k

dk
∑
l∈Pk

wlkf
l
Lk(IL)f

l
Rk(IR), (5)

where Pk is the set of filter pairs that latent disparity-variable k connects to and wlk are parameters
that weight the relative contribution of the lth filter-pair for latent variable k. These parameters can
be learned from training data along with the filters. When using pooling, each latent variable receives
activity from more than just two filter-products. Thus, unlike Eq. 1 not only quadrature pairs but
larger sets of related filters can connect to one latent disparity variable. Note that the connections
wlk need not be positive. Therefore, the contribution of a particular filter-pair may be inhibitory (cf.
Eq. 4). We found that learning leads to inhibitory connections, which tend to differ with respect to
phase, position and frequency from the excitatory connections.

3 Methods and Data-Generation

In contrast to standard (monocular) feature learning (see, e.g. [10] and references therein), acquiring
training data for binocular feature learning is more challenging. Due to fixations and vergence,

1Similar to [16, 20] one can add “bias” terms in the definition of probability. Alternatively one can think
of all variables in homogeneous notation, for example, using an additional constant “1”-dimension, or add
“confinement” terms for real-valued observables [16].
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Figure 3: Left: Filters learned from rectified camera setup. Each group of four filters corresponds
to one latent variable. Top row within each group of four: Left camera filters, Bottom row: Right
camera filters. There is no pooling, thus each latent variable is connected to exactly four filters (two
for each camera). Learning leads to within-camera quadrature pairs and across-camera position
shifts. Right: Performance of various models on the task of predicting disparity from the activities
of latent variables where basic-pooled and basic (quadrature) refers to the presented
model incorporating pooling and without pooling, respectively. See text for details.

biological receptive fields are confronted mainly with locally smooth surfaces [7, 10]. In contrast to
the monocular case, cropping patches from pairs of images is therefore not possible. Furthermore,
in contrast to the task of denoising pre-computed depth-structure monocularly [27], one also cannot
utilize databases of natural depth-estimates.

In this work, our goal is to demonstrate that we can get depth-estimates entirely through learn-
ing from raw stereo images. We therefore generated our own training data with known ground-truth
disparities. Note that existing stereo datasets, like NORB and Middlebury, do not come with ground-
truth, or are much too small for learning depth inference from data alone. However, in section 4 we
will use the NORB dataset to show that one can learn depth cues implicitly and utilize them for
recognition. We use the following approach to generating binocular image data: (i) generate a depth
map as a slanted plane in 3D space, (ii) generate a texture map as a patch from a natural image of the
same size as the depth map and (iii) project the 3D scene onto a set of cameras. We model the cam-
eras as standard pinhole cameras, defined by their camera matrix P1,P2 ∈ R3×4, respectively (see
[7] for details). Depth planes are generated by uniformly sampling planes in 3D parameterized by
the camera matrices to constrain the minimum and maximum depth value to lie within [dmin, dmax].
While 3D structure can be modeled sufficiently well using locally smooth surfaces, texture should
be modeled according to the statistics of natural images, e.g., by cropping patches of natural images.
The assumption underlying this approach is that appearance is independent of depth. While this is
not true in general, it is a good approximation for the purpose of data-generation. Note that in the 3D
scenes generated this way, no occlusion effects, and no artificial edges are induced in the rendered
images, as the depth maps are always smooth. See Fig. 1 (right) for example data.

3.1 Learning Filter Pairs

We performed experiments on 2 data sets, containing 650.000 image pairs, that have been generated
as described. In the first data set, the cameras have the same orientation as the world reference
frame, while the first camera coincides with the world frame the second camera is shifted by 15
pixels along the x axis. The image planes are of size 17× 17 pixels. We generated 650 depth maps,
where the scene depth varies between dmin = 1 and dmax = 7. For every depth map 1000 texture
maps of the same size were created by randomly cropped patches from natural images taken from
the Berkeley Database [14] and PASCAL database [3] . The second data set was generated in the
same way, but now the second camera is rotated by 45◦ around the z axis.

We trained the basic model (cf. Fig. 1 (left) and Eq. (2)) containing no pooling and an extended
model incorporating pooling, where the ”energy” term in Eq. (2) was replaced with Eq. (5). Recall
that in the basic model each latent variable is connected to exactly four filters — two in each image
whereas in the model using pooling each latent variable can connect to more that four filters in total.
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Figure 4: Learning to solve stereograms.

Within the results presented here, for both data sets, the model incorporating pooling was trained
using F = 1024 factors and K = 256 hidden units. We also experimented with different numbers
of these parameters in the range of 1000 to 1600 factors and 100 to 260 hidden units and found
that the exact number did not have a strong influence on the learned filters. Based on contrastive
divergence learning with a learning rate of typically 0.01 and a batch size of 128, the model was
trained for 10 to 100 epochs. These parameters apply to the basic model as well with the additional
constraint that each latent variable connects to exactly four filters (factors).

Learning a Simple Cross-correlation Model We trained an instantiation of the basic model con-
taining no pooling. One question we wanted to address is whether the probabilistic model learns
within-camera quadrature pairs. Figure 3 shows a representative set of learned left and right cam-
era filters. While filters tend to come in within-camera quadrature pairs and mainly position-shifts
across cameras, there is an additional type of variability, which we noted is stable across multiple
runs: There is within-camera variability in the direction orthogonal to the motion direction. In this
case, this is the vertical direction, since motion direction is horizontal in this type of data. The
variability affects both position and frequency. An example of a within-camera position shift is the
lower-left group, an example of a within-camera frequency change the lower-right group.

Learning on Rectified Camera Setups Figure 2 (two left most columns) shows as subset of 25
learned input and output filters fLk and fRk, respectively, based on data set 1 (rectified camera
setup) using model and training parameters as described before. A representative subset of filters
has been chosen randomly, using the same indices for input and output filters. It can be seen that
our model extracts Gabor like filters at different frequencies and orientations, overall covering the
whole image planes fairly evenly. Note that, while the orientation and frequency of pairs of input
and output are very similar, pairs of filters differ by a shift, which is due to the baseline of the camera
setup. Filters at different frequencies occur due to the (varying) scene depth (see also Fig. 1).

Learning on Rotated Cameras Figure 2 (two right most columns) shows as subset of 25 learned
input and output filters fLk and fLk, respectively, based on data set 2 using the same model and
training parameters as described before. Again, the subset of filters has been chosen randomly.
Remember that for data set 2, the right camera has been rotated about 45◦ around the z axis. It can
be seen that our model extracts Gabor like filters as well, with the difference that pairs of filters not
only differ in a shift but are also related by a rotation when compared to the results obtained for data
set 1.

4 Experiments

Predicting depth As the latent variables dk encode disparity indirectly, we need to learn to relate the
model generated codes d with the given ground truth disparities of our data set. There are various
approaches to extracting disparity or depth from binocular filter responses [5, 19, 22]. Here we
use the simplest one, which is linear regression trained using depth d inferred for each patch pair
with Eq. (4) and the available ground-truth on the training data. Performing linear regression on d is
equivalent to adding an extra layer to the network. Thus, the overall network is a three-layer network,
that can be trained with Hebbian-like learning, and whose intermediate layer contains multiplicative
interactions. Figure 4 shows an example of depth inference for a random dot stereogram based on
our cross-correlation model incorporating pooling. The images are of size 100 × 100 pixels. To
infer depth across the whole image, we apply the model convolutionally: We predict disparity at
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NORB TRAINING SUBSET: NORB TESTSET:
METHOD RBMMON RBMBIN CC CC+BIN RBMBIN CC CC+BIN
ERROR RATE (%) 73.65 60.43 34.85 31.48 63.28 38.91 36.80

Table 1: Classification accuracy on NORB. See text for details.

the center pixel of every 17 × 17 sub-patch. The figure shows that the model correctly infers the
depth profile encoded in the image pair. We predict depth at each site independently, and we do not
perform any smoothing or MRF inference to clean up the predictions.

Figure 3 (right) shows the Pearson correlation on hold-out data as a function of the number of filters
used. A particularly interesting conclusion in line with [5] is that pooling has a distinctly positive
effect on the predictability of disparity (basic-pooled in the plot). We included the “quadra-
ture” model (=basic cross-correlation) in the comparison, where each latent variable is connected to
exactly two filters in each camera (for a total of 4 filters).

We also trained a model on the concatenation of left/right patches for comparison. Due to the con-
ceptual similarity to the models discussed, we used a restricted Boltzmann machine (rbm in the plot)
with parameter settings comparable to those of the other models used in this experiment. In partic-
ular, we used a number of hidden units equal to the number of latent variables in the corresponding
pooled cross-correlation model. This shows that multiplicative interactions are a key ingredient to
encode disparity. Finally, for the basic-pooled model, we experimented with sparsifying penalties
to sparsify (a) the disparities (using the approach described in [12], sparse-latent in the plot),
and (b) the filter responses (by adding a small multiple of the average l1-norm of the filter responses
to the objective function, sparse-filter in the plot). Interestingly, in neither case there was
a noticeable effect on the prediction performance, which is in contrast to recent findings on object
recognition (for example, [1]).

Learning implicit depth cues The reason that depth inference is a common task in computer vision
is that depth is useful in a large number of applications, including recognition, obstacle detection and
segmentation. In this section, we show that, in contrast to traditional disparity estimation pipelines,
depth features may be used as cues along with additional information in order to improve 3-D object
recognition performance. We use the NORB-cluttered-jittered dataset [11], that was introduced for
the purpose of evaluating 3-D recognition models. In this data, depth cues are extremely valuable,
because they make it much easier to distinguish between true objects and background clutter than
monocular image features [11]. The dataset consists of 291600 training image pairs with a spatial
resolution of 108×108 pixels showing objects of 5 different classes on cluttered background. There
is a sixth class, no-object, showing just background clutter. Object position and orientation vary
across examples (see Figure 5 (left) for some example image pairs). The NORB test-set consists of
58200 image pairs showing different instances of the same object types (not the same exact objects).
So this is a (mild) form of transfer learning.

Figure 5 (right) shows filter pairs learned from the NORB training dataset. We used 1024 depth fea-
tures (= filter pairs) and 256 pooling units (=dk’s), and we PCA-whitened the images before training
(using a single whitening basis for left and right views, and retaining 1364 features, which amounts
to 95% of the variance). The figure shows that filters are highly localized and account for the dif-
ferences in camera orientation through across-image phase-shifts. We also trained a “binocular”
Restricted Boltzmann Machine (RBM) with the same number of hidden units on the concatenated
image pairs.

Table 1 (left) compares the classification performance of the monocular RBM (RBMMON), binocular
RBM (RBMBIN), the proposed pooled cross-correlation model (CC) and the proposed pooled cross-
correlation model combined with the binocular RBM (CC+BIN) on a (hold-out) subset comprising
29100 cases from the training data set (“no transfer learning”). We used a simple logistic regression
model with l2-regularization penalty (λ‖W‖F where W are the linear logistic regression parame-
ters) and chose λ from the set {0.1a}a=1,...,5 using a validation set. Both training and validation set
consist of 29100 randomly chosen subset of the NORB training set. The monocular model performs
badly (on this data-set 83% correct would be the performance of random guessing). This is in line
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Figure 5: Left: Example image pairs from the NORB-cluttered-jittered dataset. Right: Learned
binocular filter pairs.

with [11] who found that monocular features are not very useful for this difficult data-set. However,
the table shows also that the RBM trained on the concatenation of views performs only slightly bet-
ter. Including multiplicative interactions, in contrast, yields much better performance, and so does
the combination of features from both types of model (right-most figure in the table).

Table 1 (right) shows the classification performance on the test set (“transfer learning”). We trained
the classifier on a subset of 10000 training cases and we show the performance on the whole test-set.
The table shows that the plain RBM features, again, perform much worse than the depth-features.
It also shows that combining the two types of features yields better performance than using just
one type of feature, showing that the two different models do in fact encode different types of
structure in the data. It is interesting to note that the proposed model combined with simple linear
classification on a few hundred dimensional feature vector can achieve recognition rates better than
a large, monocular convolutional network (see [11] for details).

5 Discussion

We described a way to cast binocular disparity estimation as a deep belief network, and we showed
how learning on data-bases of multi-camera views of a scene leads to shifted Gabor filter pairs,
that are well suited to extract depth information from image pairs. This shows that depth inference
can emerge naturally in a three-layer network with multiplicative interactions which is trained with
simple Hebbian learning.

Most current practical work on stereopsis focusses on extracting dense depth-maps using MRFs.
Potential reasons for biology to take a different route might be that (a) depth via deep learning makes
it possible to use the exact same learning algorithm for depth inference that is also used to recognize
objects (and probably also motion); (b) often, a simple depth cue, as given in some population code,
d, is entirely sufficient to take swift vital decisions, such as to dodge an approaching object; (c)
learning depth inference from data allows for feed-forward depth perception, and thus to avoid the
need for a complicated and brittle pipeline, which involves rectification, hypothesis generation, and
robustification using RANSAC.

In this paper we showed how unsupervised feature learning may be used to mimick this way of
extracting depth maps from image pairs, and that it allows us to compute implicit depth cues from
binocular data for use in object recognition tasks, showing that biologically consistent depth infer-
ence is achievable with the right types of non-linearity.
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