
Gradient-based learning of higher-order image features

Roland Memisevic
Department of Computer Science

University of Frankfurt
ro@cs.uni-frankfurt.de

Abstract

Recent work on unsupervised feature learning has shown
that learning on polynomial expansions of input patches,
such as on pair-wise products of pixel intensities, can im-
prove the performance of feature learners and extend their
applicability to spatio-temporal problems, such as human
action recognition or learning of image transformations.
Learning of such higher order features, however, has been
much more difficult than standard dictionary learning, be-
cause of the high dimensionality and because standard
learning criteria are not applicable. Here, we show how
one can cast the problem of learning higher-order features
as the problem of learning a parametric family of mani-
folds. This allows us to apply a variant of a de-noising auto-
encoder network to learn higher-order features using sim-
ple gradient based optimization. Our experiments show that
the approach can outperform existing higher-order models,
while training and inference are exact, fast, and simple.

1. Introduction
Unsupervised feature learning has become an area of

major interest in many vision tasks that involve some form
of recognition (including recognition of objects, scenes, ac-
tions). Feature learners are typically defined as two-layer
networks, or graphs, that connect a layer of pixels with a
layer of “hidden units”. Each hidden unit defines a linear
projection, or “filter”, and the set of all filter responses de-
fines a parsimonious code for the observation (for example,
[21], [23], [17], [22], [1]. Most common learning criteria
are reconstruction error or approximate probability of the
observed images. When applied to natural image patches,
Gabor-filters emerge naturally in practically all the differ-
ent methods. Besides their biological plausibility, feature
learners tend to perform very well in recognition tasks.

An extension of feature learning that has received a lot of
attention recently, is the learning of relations between pixel
intensities, rather than of pixel intensities themselves [18],
[12], [25], [19]. For this end, one can extend the bi-partite

graph of a standard sparse coding model with a tri-partite
graph that connects hidden variables with two images. Hid-
den units then turn into “mapping” units that model struc-
ture in the relationship between two images rather than
static structure within a single image. The model as a whole
thus can be thought of as a model of image transformations
[18]. This type of model has recently been applied to learn-
ing a representation of optical flow [18], spatio-temporal
features [30], class-specific transformations [11], [29], or
transparent motion [19]. Learning relations between pixels
is closely related to bi-linear modeling [26], [20], [31], and
it has been extended to mixed data-types, such as image/eye
position [15].

Recently, the special case of relational feature learning,
where the two images are the same, has attracted some inter-
est. In this case, hidden units encode within-image pixel co-
variances or, equivalently, higher-order image features [12],
[25], [24], [4]. An instantiation of the vector of hidden vari-
ables in this type of model can be thought of as encoding a
conditional covariance matrix over pixels, instead of a con-
ditional mean, as would be the case in a standard sparse
coding model. Learning of feature covariances was shown
to yield good results in a variety of recognition and clas-
sification tasks (for example, [24], [5]). An alternative in-
terpretation for why the inclusion of higher-order features
works well is, that they are better at representing real-valued
(and, in particular, heavy-tailed) data [24], [4].

Although higher-order features can improve the perfor-
mance in many recognition tasks, learning them has been
considerably harder than training standard sparse coding
models. The reason is that learning of higher-order features
amounts to learning on a basis-expansion of the inputs, such
as on all pair-wise products of pixel intensities. As a re-
sult, the dimensionality and the number of parameters grow
at least quadratically with the number of input pixels. A
common solution is to pre-project input images onto basis-
functions before computing pair-wise products [19], [25],
[12]. Unfortunately, for learning one has to invert these pro-
jections in order to compute objective functions and gradi-
ents. Naive training thus leads to a computational complex-



ity that remains quadratic in the number of input compo-
nents. More importantly, existing methods have to rely on
sampling-based schemes, such as Hybrid Monte Carlo [24]
or various modifications of contrastive divergence learning
([9]) to deal with the presence of three-way cliques [29].

In this work we cast the problem of learning higher-
order features as the task of learning a family of manifolds.
This makes it possible to learn higher-order features using
a “relational” variant of an auto-encoder. The model is sim-
ilar to the classical auto-encoder (for example, [10]), with
the difference that parameters are gated by additional in-
puts, which turns the auto-encoder into a type of a higher-
order neural network [7]. When using a single hidden layer
with linear activations, the model takes the form of a (con-
ditionally trained) bi-linear model [31] [8], [20], where ad-
ditional “simple cells” can be used to pre-project inputs be-
fore computing multiplicative interactions. Training both
relational and within-image higher-order features is pos-
sible with simple back-propagation. Potential advantages
of this model are that (a) low-dimensional pre-projections
or multi-layer versions of the model can be defined nat-
urally, (b) by using back-propagation, it is not necessary
to manually calculate gradients, and one can use modern
code-generation methods to transparently parallelize code
(for example, [2]), (c) the model makes no difference be-
tween learning of covariance-features and learning of trans-
formations, (d) covariance-features can be mixed with stan-
dard features by simply adding connections that are not
gated, (e) in order to deal with binary, real-valued and other
types of observables one can simply use the appropriate
activation/cost-functions in the final layer of the network,
such as squared error for real-valued data and log-loss for
binary data.

Computing three-way-products of low-dimensional pro-
jections has been known as “pi-sigma”-learning in the liter-
ature [28]. Higher-order feed-forward networks themselves
date back to at least to the 1980’s [7]. Neither higher-order
projections nor simple higher-order networks have been ap-
plied in an auto-encoder or for feature learning to the best
of our knowledge.

2. Learning a family of manifolds

2.1. Auto-encoders and de-noising auto-encoders

Let y ∈ IRnY be a high-dimensional input vector with
components y1, . . . , ynY

. An auto-encoder defines a map-
ping ŷ(h(y)), consisting of an encoder h(·) and a decoder
ŷ(·) that is trained to reconstruct the input data. The en-
coder is usually defined as a nonlinear function applied to a
linear projection of y:

hk(y) = σ
(∑

j

wkjyj
)

(1)

with σ(·) being an element-wise sigmoid activation func-
tion, such as σ(a) = (1 + exp(−a))−1. The decoder re-
constructs y from the hidden units1:

ŷj(h(y)) =
∑
k

wkjhk(y). (2)

Traditionally, nH , the number of components of h(y), is
set to be smaller than the dimensionality of y, such that it
constitutes a bottleneck, which forces the model to com-
press the input before reconstructing it [10]. Recently, [34]
showed that instead of a bottleneck layer one may use an
overcomplete hidden layer, if one corrupts the inputs before
computing hidden layer activities. Since reconstruction-
targets are left unchanged, the model then effectively learns
to de-noise the data. This model has been referred to as a
“de-noising auto-encoder”, and it was shown to outperform
not only standard auto-encoders, but also a variety of other
sparse coding methods on recognition tasks [34].

Several options exist for the type of noise-process to use.
A simple and effective one is blanking out random com-
ponents of the input vector [34]. For this end, a random
fraction, η, of input-pixels is chosen randomly in each train-
ing iteration and multiplied by zero. The task of the model
thereby becomes to fill in the components thus turned into
“missing entries”. Optimal values for η are typically in the
range from 0.1 to 0.5. An important feature of de-noising
auto-encoders is that they make back-propagation applica-
ble to sparse coding, since they allow for learning of over-
complete representations using gradient-descent.

2.2. Relational auto-encoders

When the appearance of an object undergoes transforma-
tions due to lighting-, pose-, or other variations, images of
the object may be thought of as tracing out a manifold2 in
the high-dimensional pixel-space. The intrinsic dimension-
ality of this manifold is equal to the number of degrees of
freedom in the transformations.

When dealing with image pairs (x ∈ IRnX , y ∈ IRnY ),
which are related through transformations, one can think of
the outputs y as being confined to a conditional appearance
manifold. In contrast to the static case this manifold is a
function of the input image x, in that different inputs x give
rise to different manifolds over y. If we assume that this
dependency is smooth, so that small variations in the input
image x lead to small variations in the manifold associated

1We use an auto-encoder with tied parameters here for convenience,
where decoder parameters are the transpose of encoder parameters. But
one can also use untied weights.

2While the manifold-metaphor is useful to derive mathematical ar-
guments, real-world data can be structured in a form that is different
from a densely sampled, homogeneous manifold. When using over-
complete codes, a more accurate requirement is that the entropy of the
data-distribution is smaller than the entropy of a uniform distribution in
data-space.



x

h

ŷy

x

x

y

h

x

ŷ

Figure 1. Schematic representations of relational auto-encoders. Triangles represent units involved in multiplicative interactions, circles
represent standard units. Left: Naive version. Hidden unit activations are computed by combining inputs x multiplicatively with inputs y;
output activations by combining hidden units multiplicatively with inputs x. Right: Model with additional intermediate layers.

with x, then we can define the problem of learning about
transformations as learning a family of manifolds, param-
eterized by the input image x.

For this end we now turn to the auto-encoder network
as a simple parametric manifold learning method. We can
define an auto-encoder as a conditional model of y given x,
if we let the model parameters wkj be a function of x. The
role of x, then, is to modulate the parameters of the model
as suggested. To let wkj be a linear function of x, we define

wkj(x) =
∑
i

ŵikjxi (3)

where ŵikj are linear parameters associated with parameter
wkj of the auto-encoder. Plugging Eq. 3 into Eq. 1 shows
that in the conditional model, hidden variable activities are
now given by a simple basis expansion of x and y

hk(x;y) = σ
(∑
ij

ŵikjxiyj
)
, (4)

and the outputs ŷ are given by a basis expansion of x and h

ŷj(h(x,y)) =
∑
ki

ŵikjxihk(x,y). (5)

An illustration of the model is depicted in Figure 1 (left
plot). The network takes two data-cases, x and y, as input,
and it uses pair-wise products between the components of x
and y as inputs to the hidden variables. Feeding pair-wise
products into the hidden units turns these into relational or
“cross-correlation”-encoders, that learn to represent pat-
terns of co-occurrence among the components of x and
y. While hidden unit activities simply rely on a basis-
expansion of the inputs, it is important to note that recon-
structions for y are computed similarly, by multiplicatively
combining the vector of h with the known vector x. As
a result, we can deploy standard learning criteria, such as
reconstruction error to train the three-way parameters. In
particular, for real-valued data y, we can minimize

E =
∑
α

(
ŷ(h(xα;yα))− yα

)2
(6)

using a set of training pairs {(xα,yα)}. For binary or
multinomial y, we minimize cross-entropy loss (negative
log-probability). As with a standard auto-encoder, one
can use back-propagation to compute gradients and use
gradient-based optimization for learning. The de-noising
criterion (cf. Section 2.1) applies without change: We sim-
ply need to corrupt x and y independently.

The model defines a “conditional manifold” over y as a
function x. This is in contrast to [18], for example, who de-
fine a conditional distribution. The model is an instance of
a higher-order neural network, i.e. a network whose units
compute products of incoming variables, not just weighted
sums [7]. We refrained from adding “bias terms” when
defining hidden unit activities and output activities to avoid
clutter, although in practice it is advisable to define the net
input of each units as an affine, rather than a linear, function.
Alternatively, one can think of data and hidden variables as
being in homogeneous coordinates, i.e. with an extra, con-
stant “1”-dimension.

2.3. Adding “simple cells”

The number of three-way parameters in the model de-
scribed thus far is (nX × nY × nH) (Eq. 3). This can be
prohibitively large in practice, in particular, if one assumes
the number of relational units to be roughly on the same
order as the number of inputs and outputs.

To reduce the large number of parameters, it can be use-
ful to impose restrictions on the parameter “tensor” W =(
ŵikj
)
ijk

. One such restriction is to allow three-way con-
nections only for subsets of variable triplets, rather than for
all. If we assume the number of input, output and relational
units to be the same, we can restrict the parameter tensor,
such that every relational unit is connected to exactly one
input unit and to exactly one output unit [19].

This might seem overly restrictive at first sight. Also,
the assumption of equal numbers of units may not often
hold in practice. Note, however, that we can add an inter-
mediate representation, which can learn to deal with these
restrictions optimally. For this end, we can project x, y
and h onto matrices (or “latent factors”) FX , FY and FH ,



respectively, and allow for element-wise (or in other ways
restricted) three-way interactions in these projections. For
element-wise interactions, the dimensionality, nF , of the
latent factors needs to be identical for inputs, outputs and
hidden units. In this case, FX is an nX × nF , FY is an
nY × nF and FH is an nH × nF matrix. Since we can
absorb element-wise three-way interactions into the factor
matrices, we can let these constitute the whole set of param-
eters. By using symmetry between the encoder and decoder
networks, we can then define hidden unit activities as

hk(x;y) = σ
(∑

f

FHkf
∑
i

FXif xi
∑
j

FYjfyj
)
. (7)

Output activities, given hidden units and inputs x, are com-
puted similarly as

ŷj
(
h(x,y)

)
=
∑
f

FYjf
∑
i

FXif xi
∑
k

FHkfhk(x;y) (8)

The overall architecture is shown in Figure 1 (right) plot.
It is possible to extend the model to define larger architec-
tures where high-order units are mixed with standard hidden
units. It is also possible to use different filters in the encoder
and the decoder-network.

3. Mean-covariance auto-encoders
The sole function of the inputs, x, in the definition of the

conditional auto-encoder is to modulate parameters (Eq. 3).
This is why training – despite the presence of three-way in-
teractions – amounts to simple gradient-based optimization.
Nothing in the definition of the model, however, requires
that x is the input and y is the output. The two types of ar-
gument are interchangeable. In practice, as we shall show,
it can be useful to train the model symmetrically, by recon-
structing both y from x and x from y. A simple way to
achieve this is by defining the overall objective function as
the sum of the two asymmetric objectives

E =
∑
α

(
ŷ
(
h(xα;yα)

)
−yα)2 +∑

α

(
x̂
(
h(xα;yα)

)
−xα)2

(9)
Using the symmetric objective can be thought of as the non-
probabilistic analog of modeling a joint distribution over x
and y as opposed to modeling a conditional.

3.1. Setting x = y

As an important special case of symmetric training, we
now consider the case where input and output image are
the same. As we discussed in Section 2.1, de-noising auto-
encoders can prevent an overcomplete hidden layer from
learning the trivial identity mapping. Here, we suggest us-
ing the same approach to prevent relational hidden variables
from learning the identity in a covariance model of a single
image.

When training on pairs of identical images, higher-order
hidden variables can encode within-image covariance struc-
ture [25], [12]). We can use a relational auto-encoder to
model within-image covariances by setting x = y and us-
ing the de-noising criterion exactly as before (cf. Section
2.2). When dealing with two identical copies of a single
input image x, we apply the noise process twice, and inde-
pendently, to each copy. We can thus train the model in the
same way as a standard relational auto-encoder.

It is interesting to note that, while a de-noising auto-
encoder makes use of one perturbation of the input in or-
der to model pixel-“means”, the relational auto-encoder uti-
lizes two differently perturbed copies of the same stimu-
lus, which enables it to model covariances. In other words,
in order to encode covariance patterns, the model com-
pares multiple noisy copies of the same input. Interest-
ingly, the only piece of biological hardware required to im-
plement this scheme are multiple feature detectors that en-
code the same feature, and an architecture where these mul-
tiple encodings feed into the same pooling unit.

[25] suggest using various positivity constraints on the
model parameters to encourage positive-definiteness of the
covariance-matrices implicitly defined by that model. With
the auto-encoder, positivity constraints can be enforced, if
desired, by using a change of variables, such as Fif ←
exp(Fif ), still allowing for training with unconstrained gra-
dient descent. But we found in our experiments, that it is
usually possible to train the model without such constraints
or changes of variables. We did find, however, that one can
obtain better stability by re-normalizing filters throughout
the optimization, such that filters grow slowly and maintain
roughly the same relative size. In analogy to probabilistic
models, we shall refer to a relational auto-encoder with only
covariance-units as “covariance auto-encoder” (cAE) and a
model that also includes standard hidden units as “mean-
covariance auto-encoder” (mcAE). Furthermore, we shall
refer to hidden units encoding higher-order structure within
an image as “covariance-units”, and those encoding across-
image structure as “relational units” or “cross-correlation”
units.

4. Experiments
4.1. Learning image transformations

In a first set of experiments3 we trained the relational
auto-encoder on pairs of transformed image patches, forc-
ing hidden variables to encode the transformations [18],
[19], [30].

First, we applied the model to pairs of shifted random
dot images using the data-set provided on the accompany-
ing website of [19]. The data-set consists of 10000 binary

3A Python/theano implementation of the model is available at http:
//www.cs.toronto.edu/˜rfm/code/rae/index.html

http://www.cs.toronto.edu/~rfm/code/rae/index.html
http://www.cs.toronto.edu/~rfm/code/rae/index.html


image patch pairs of size 13 × 13 pixels each, where the
output image in each pair is a translated version of the input
image, and both translation direction and amount are drawn
uniformly randomly. We trained a model with 100 filters
and 25 relational hidden units using cross-entropy loss. FX

and FY are both of size 169 × 100, FH is 25 × 100. We
trained the model with stochastic gradient descent, using
mini-batches of size 100 image pairs for about 1000 epochs.
Filter pairs learned by the model are shown in Figure 2 (top
row). The figure shows how the model, similar to [19],
learns phase-shifted Fourier components to represent trans-
lations.

To compare the performance quantitatively against [19],
we created an evaluation set by splitting the data-set
into 5000 training, 2500 validation, and 2500 test cases.
We performed a search over learning-rate, number of
training-epochs, filter normalization, and, for the auto-
encoder, corruption-level η. We computed cross-entropy-
reconstruction error for both models on the validation and
test set. The test set performance of the winners on the
validation set is 33.29 for the auto-encoder and 34.42 for
the model described in [19], showing that the auto-encoder
can yield competitive performance. Interestingly, this result
parallels recent work on classification, where de-noising
auto-encoders tend to slightly outperform restricted Boltz-
mann machines [34].

We also trained the model on real-valued patches
cropped from a subset of the Tiny Images-dataset consisting
of 80 million images of size 32×32 pixels [32]. We cropped
patches of size 16 × 16 pixels randomly from the images
and transformed them (i) using random affine transforma-
tions and (ii) using artificial motion discontinuities (details
below). Affine filters are depicted in Figure 2 (middle row).
The filters are similar to rotation filters presented in [19].

We generated a data-set with motion discontinuities as
follows. We sampled (uniformly randomly) a line separat-
ing a 10× 10-patch, cropped from the Tiny Images-dataset,
into two regions. We then sampled a translation direction
and amount for each of the two regions separately and per-
formed a separate translation in the two regions. We made
sure that no empty space-artifacts were generated in this
process. As a result the data-sets exhibits typical aspects
of real-world motion-discontinuities, such as occlusion and
disocclusion [3]. Because of the combinatorial explosion,
the number of possible transformations is huge. We trained
the relational auto-encoder using 250000 patch-pairs. One
objective of this experiment is to investigate whether the
auto-encoder is able to learn a factorial representation to
deal with the combinatorial explosion. The learned fil-
ters are depicted in the bottom row of Figure 2. The fig-
ure shows that in order to learn motion discontinuities the
model projects input images onto localized Gabor pairs. It
is interesting to note that Gabor features are useful here for

Figure 2. Filter pairs learned from image transformations: Trans-
lations (top), affine (middle), motion discontinuities (bottom). The
left column shows input filters, the right column shows output fil-
ters.

a slightly different reason than to represent natural images:
Gabor filter pairs make it possible to de-compose the ob-
served transformations into local shifts and thereby to deal
with the combinatorial number of transformations.

4.2. Encoding motion with a “bag of warps”

Relational hidden units can model transformations by
combining a set of factors which, in turn, multiplicatively
gate the responses of filters between inputs and outputs (cf.
Eq. 8 and Fig. 1). Each instantiation of hidden variables
thereby represents a warp, that is, a transformation in the
space of “stacked” gray-value intensities. We can extend the
model to define a “bag-of-warps” by adding the responses
of relational units at various positions in an image or in a
video, with possible application, for example, in video clas-
sification.

To test, whether the model can learn meaningful struc-
ture from natural videos, we first trained a model with
400 filters and 400 relational hidden variables on adja-
cent time frames of size 16 × 16 pixels extracted from



Figure 3. Input filters learned from broadcast television. (Corre-
sponding output filters shown in Figure 4.)

the van Hateren broadcast television database [33]. We
PCA-whitened the patches first, by projecting onto the first
171 PCA-components. We initialized the relational auto-
encoder with a two-dimensional topology, by constrain-
ing the matrix FH , such that nearby hiddens on a two-
dimensional grid are connected to nearby factors (see, for
example, [24]). Figures 3 and 4 show the learned input and
output filters, respectively, and show that the model learns
to represent natural video using phase-shifted, Gabor-like
filters.

We then trained a “bag-of-warps” model with 1024
relational units and 1024 factors using the KTH training
data-set [27], where we crop patch pairs from adjacent
frames around SIFT-keypoints. The data-set consists of
videos of 6 types of action performed by humans. We define
the representation for a single video as the sum of relational
hidden variables across all keypoints and all frames. Plug-
ging this representation into a multinomial logistic regressor
yields a test-set recognition rate of 80.56% correct, which
compares reasonably well with existing methods, consider-
ing the simplicity of the approach, and the fact that key-
points are spatial not spatio-temporal.

4.3. Learning within-image correlations

To evaluate the model’s ability to learn within-image
structure, we trained a model on 2 million patches of size
8 × 8 pixels cropped from the Tiny Images-dataset. Fig-
ure 5 shows 576 learned filters. Like [24], we used a 1-
dimensional topography to initialize the matrix FH .

We used the CIFAR-10 dataset [13], a labelled subset

of the Tiny Images-dataset to evaluate the model quantita-
tively. The CIFAR-10 dataset consists of 50000 training
images and 10000 test images of size 32× 32. There are 10
different object classes. For comparability, we performed
a numerical evaluation following the same protocol as used
by [24] and [25]. Specifically, we trained both a covariance
encoder and a mean-covariance encoder on patches of size
8×8 pixels cropped from a subset of the TINY-dataset [32]
which do not overlap with the CIFAR-10-dataset.

After training, we extracted features convolutionally by
computing hidden unit activities on a regular 7×7 grid from
the image. Like [24], we compared one model with 225
filters and 225 covariance variables, one model with 900
factors and 225 covariance variables, and one model with
576 factors (shown in Figure 5), 144 relational variables
and 81 mean variables. For all models, the total number
of hidden variables (including both covariance- and mean-
encoding variables) is 225. The dimensionality of the con-
volutional feature vector is 49 × 225 = 11025 in all cases.
We trained a multinomial logistic regression model for clas-
sification. We used no weight-decay for training the mod-
els and a weight-decay of 0.001 for the logistic regression
model in all experiments. We did not vary hyperparameters
such as the corruption level, which we set to 0.5 in all exper-
iments. Performing cross-validation would allow us to set
these and other hyper-parameters (such as weight-decay and
learning-rate) differently for each run and therefore likely
improve the performance. In contrast to [24], for we train
all model-parameters at once, rather than holding any sub-
sets of parameters fixed at any time.

Table 1 shows classification performance in %-correct.
The performance for our model is in general comparable to
that of the mcRBM, where in 2 out of 3 cases the relational
auto-encoder shows better performance. Like for similar
probabilistic models, adding “mean”-units to the model im-
proves performance. It is important to note, that training the
auto-encoder is significantly simpler and faster than train-
ing the mcRBM using hybrid Monte Carlo [24]. In ad-
dition to the mcRBM, we also compared to a simple de-
noising auto-encoder with 225 hidden units, but we never
achieved recognition rates beyond approximately 40% with
that model, which seems to indicate that covariance-codes
are key to good recognition rates for the setting (patchsize,
number, features, etc.) that we used.

A careful search over parameters such as the input patch
size, stride in the convolutional extraction or choice of top-
level classifier, is likely to improve performance. While
the model is likely to generalize to other settings and other
patch sizes, the main purpose of this experiment is not to
achieve the best possible object recognition rate per se, but
to show that the relational auto-encoder provides an effec-
tive way to extract higher-order structure from images.



Figure 4. Output filters learned from broadcast television. (Corre-
sponding input filters shown in Figure 3.)

#factors / #covar-hiddens /
#mean-hiddens

Model Perf (%)

225 / 225 / 0 cRBM 63.6
225 / 225 / 0 cAE 64.5
900 / 225 / 0 cRBM 64.7
900 / 225 / 0 cAE 65.4
576 / 144 / 81 mcRBM 68.2
576 / 144 / 81 mcAE 67.7

Table 1. CIFAR-10 recognition rates.

5. Discussion

Correspondence is a ubiquitous and fundamental con-
cept in computer vision, which is at the heart of prob-
lems like stereo, motion understanding, tracking, odome-
try and recognition. Relational sparse coding is a way to
introduce learning into the modeling of correspondences.
Relational hidden units could be thought of as “hubs”,
which combine information sources. Thus they can com-
plement units which simply encode information. One can
envision hierarchies containing both multiplicative “hubs”
that combine information and feature-learners that encode
information (including higher-order information learned
by “hubs”, such as depth and motion). Such an “en-
coder/combiner-network” could still be trained with simple
back-propagation. Interestingly, computing relational hid-
den unit activities amounts to pooling over rectified filter-
responses, so hidden units act like complex cells and factors
like simple cells. The same is true in probabilistic models

Figure 5. Within-image filters learned from a subset of the Tiny
Images. Top: Covariance filters. Bottom: Mean filters. Best
viewed in color.

[19]. The idea that complex cells, either through multiplica-
tive interactions, or equivalently through “squaring”, can act
as information combiners, dates back at least to energy and
cross-correlation models (see, for example, [6] and refer-
ences therein). But there has been little work on learning
such models from data.

Relational auto-encoders bear some interesting connec-
tions to structured prediction [14]. High-dimensional pre-
diction is hard, because of the combinatorial explosion that
follows from taking output dependencies into account. One
approach to dealing with this, is to ignore the dependencies
among the output-components, and to predict each compo-
nent independently, as would be the case, for example, with
linear regression. Another approach is to assume restricted
dependencies among the outputs, such as a chain- or tree-
structure, in which case one can use dynamic programming
or belief-propagation for inference and learning [16], [14].
Learning a conditional manifold can be viewed as a third
way of predicting high-dimensional outputs, where, in con-
trast to conditional graphical models, we learn the condi-
tional dependency structure with latent variables.



Acknowledgments

This work was supported in part by the German Federal Min-
istry of Education and Research (BMBF) in the project 01GQ0841
(BFNT Frankfurt).

References
[1] A. J. Bell and T. J. Sejnowski. The ”independent compo-

nents” of natural scenes are edge filters. Vision research,
37(23):3327–3338, December 1997. 1

[2] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, and Y. Bengio. Theano: a CPU
and GPU math expression compiler. In Proceedings of the
Python for Scientific Computing Conference., 2010. 2

[3] M. J. Black and D. J. Fleet. Probabilistic detection and track-
ing of motion boundaries. Int. J. Comput. Vision, 38:231–
245, July 2000. 5

[4] A. Courville, J. Bergstra, and Y. Bengio. A spike and slab
restricted boltzmann machine. In Artificial Intelligence and
Statistics, 2011. 1

[5] G. E. Dahl, M. Ranzato, A. Mohamed, and G. E. Hin-
ton. Phone recognition with the mean-covariance restricted
Boltzmann machine. In Adv. in Neural Information Process-
ing Systems 23. 2010. 1

[6] D. Fleet, H. Wagner, and D. Heeger. Neural encoding of
binocular disparity: Energy models, position shifts and phase
shifts. Vision Research, 36(12):1839–1857, June 1996. 7

[7] C. L. Giles and T. Maxwell. Learning, invariance, and
generalization in high-order neural networks. Appl. Opt.,
26(23):4972–4978, Dec 1987. 2, 3

[8] D. Grimes and R. Rao. Bilinear sparse coding for invariant
vision. Neural Computation, 17(1):47–73, 2005. 2

[9] G. Hinton. Training products of experts by minimizing con-
trastive divergence. Neural Computation, 14:2002, 2000. 2

[10] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, July 2006. 2

[11] G. B. Huang and E. Learned-Miller. Learning class-specific
image transformations with higher-order Boltzmann ma-
chines. In In Workshop on Structured Models in Computer
Vision at CVPR, 2010, 2010. 1

[12] Y. Karklin and M. Lewicki. Emergence of complex cell prop-
erties by learning to generalize in natural scenes. Nature,
457:83–86, January 2009. 1, 4

[13] A. Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, Toronto, Canada, 2009. 6

[14] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data. In Proc. 18th International Conf. on Machine
Learning. Morgan Kaufmann, San Francisco, CA, 2001. 7

[15] H. Larochelle and G. Hinton. Learning to combine foveal
glimpses with a third-order Boltzmann machine. In Adv. in
Neural Information Processing Systems 23. 2010. 1

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, November 1998. 7

[17] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for
color image restoration. IEEE transactions on image pro-
cessing, (1):53–69, January 2008. 1

[18] R. Memisevic and G. E. Hinton. Unsupervised learning of
image transformations. In CVPR 2007, 2007. 1, 3, 4

[19] R. Memisevic and G. E. Hinton. Learning to represent spatial
transformations with factored higher-order Boltzmann ma-
chines. Neural Computation, 22(6):1473–92, 2010. 1, 3, 4,
5, 7

[20] B. Olshausen, C. Cadieu, J. Culpepper, and D. Warland. Bi-
linear models of natural images. In SPIE Proceedings: Hu-
man Vision Electronic Imaging XII, San Jose, 2007. 1, 2

[21] B. Olshausen and D. Field. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for natural
images. Nature, 381(6583):607–609, June 1996. 1

[22] S. Osindero, M. Welling, and G. E. Hinton. Topographic
product models applied to natural scene statistics. Neural
Computation, 18:381–414, February 2006. 1

[23] M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learn-
ing for deep belief networks. In Adv. in Neural Information
Processing Systems, 2007. 1

[24] M. Ranzato and G. E. Hinton. Modeling Pixel Means and
Covariances Using Factorized Third-Order Boltzmann Ma-
chines. In CVPR, 2010. 1, 2, 6

[25] M. Ranzato, A. Krizhevsky, and G. E. Hinton. Factored 3-
Way Restricted Boltzmann Machines For Modeling Natural
Images. In Artificial Intelligence and Statistics, 2010. 1, 4, 6

[26] R. Rao and D. Ballard. Efficient encoding of natural
time varying images produces oriented space-time receptive
fields. Technical report, Rochester, NY, USA, 1997. 1

[27] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: A local svm approach. In ICPR’04. IEEE Computer
Society, 2004. 6

[28] Y. Shin and J. Ghosh. The pi-sigma network: An efficient
higher-order neural network for pattern classification and
function approximation. In in Proceedings of the Interna-
tional Joint Conference on Neural Networks, 1991. 2

[29] J. Susskind, R. Memisevic, G. Hinton, and M. Pollefeys.
Modeling the joint density of two images under a variety of
transformations. In CVPR 2011, 2011. 1, 2

[30] G. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolu-
tional learning of spatio-temporal features. In Proc. Euro-
pean Conference on Computer Vision, 2010. 1, 4

[31] J. Tenenbaum and W. Freeman. Separating style and con-
tent with bilinear models. Neural Computation, 12(6):1247–
1283, 2000. 1, 2

[32] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny
images: A large data set for nonparametric object and scene
recognition. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 30:1958–1970, 2008. 5, 6

[33] L. van Hateren and J. Ruderman. Independent component
analysis of natural image sequences yields spatio-temporal
filters similar to simple cells in primary visual cortex. Proc.
Biological Sciences, 265(1412):2315–2320, 1998. 6

[34] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol. Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research. 2, 5


