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A Hierarchical Visual Feature-Based Approach
For Image Sonification

O.K. Toffa and M. Mignotte

Abstract—This paper presents a new image sonification system environments [5], engineering analyses and simulatiorts an

that strives to help visually impaired users access visuahfor- interpretations based on the sonification of physical dtiesit
mation via an audio (easily decodable) signal that is generated [6].

in real time when the users explore the image on a touch screen

or V;]"th a_tPO'm‘?trh_Tr;ﬁ sonified ts'lgnatl' Wh";h |sthgenera:ed§f<|3r Hence, the idea behind image sonification is to find ways
eacn positon witnin the Image, tries to capture the most usa . . .

and discriminant local information about the image content at to translate thg image dat_a, WhICh. desgrlbe shape, col_or. and
different levels of abstraction, ranging from low-level (& the EXture _(Somet'mes depth information), into sounds. THia i
pixel level) to high-level (segmentation) and combining le-level recent field that has naturally emerged after the developofen
(color edges and texture), mid-level and high-level (graeint or  image and sound processing techniques. Such sonificatipn ma
color d|s(,jtr|but|on for ?"’"Ch region of tr|1e image) featurels. e pe particularly useful for finding ways to represent infotima
proposed system mainly uses musical notes at several octawe w1 \yoid be accessible to users with visual impairments.

the notion of timbre, and loudness but also uses pitch, rhytin . . . N .
and the distortion effect in an intuitive way to sonify the image This technique is also beneficial in circumstances wherngavis

content both locally and globally. To this end, we use percepally — representations would be impossible to use or to enrich a
meaningful mappings, in which the properties of an image are graphical realization [7], for human-computer interasto
directly reflected in the audio domain, in a very predictableway. or for medical applications [8]. In these latter applicatio
The listener can then draw simple and reliable conclusionstaut 55y ditory feedback can complement visual data wiithou
the image by quickly decoding the sonified result. . .

requiring a surgeon to constantly monitor the screen or to

Index Terms—Sonification, visually impaired, sound synthesis, he|p him or her to understand critical and additional useful
auditory feedback, audio mapping. information

Previous work on image sonification can be roughly divided
into two categories. In high-level (symbolic) sonification
l. INTRODUCTION visual information is translated into natural speech |agu

ONIFICATION is the translation of data into sound. MoreT his field is still in its infancy since it is very difficult ta,
generally and precisely, it is the use of non-speech audfgrot impossible, to fully understand the semantic content
to convey information or perceptua|ize data. In fact, thasdfi all images. Let us note that the obvious limitation of such
has greaﬂy progressed over the past Century and Curre]jWy nsoniﬁca.tion is that it is limited to imageS Composed of Otﬂ.ec
constitutes an established area of research. One of thestarfhat have obvious semantic representations. For exantple, i
and most successful applications of sonification is the &eigs not clear how to sonify complex shapes, color, textures
counter, which was invented 08 and which uses the rate ofOr variations of these visual cues and abstract drawings and
clicking to convey the level of radiation being detectedtis t Paintings. In contrast, low-level image sonification ainos t
immediate vicinity of the device. One of the most recent arffRnspose image features or visual information into anrabtst
technologically advanced applications is SONAR [1], whicRon-verbal audio signal [9]. This work falls into this latte
uses echo location, very similar to that used by bats anchmarfategory. Let us also add that this type of sonification can be
mammals (whales, dolphin, etc.), to convey informationuaboduite complementary to a high-level sonification type foe th
the 3D underwater environment, not only about the geomeft{eviously mentioned reasons. Hence, image sonification ca
(i.e, position, shape, orientation of one or several near Bg viewed as a data conversion or a data mapping between
far Objects) but also, to a certain extent, about the Surfa&"@ visual and audio domains. Nevertheless, it is crucial to
properties of the detected objects, the nature of the sedsmeunderstand that the time-independent two-dimensionaireat
lying on the seafloor and/or the structure of the seabed. WRh an image and the temporal nature of a sound makes
the evolution of the computing technology and the presentls conversion nontrivial, especially since a well-desid
of tactile screens, smartphones, tablets and wearableetevisonification system must make intuitive sense, and thenbste
sonification has become more interactive [2] and is used fitust be able to effectively extract and discern and reag-tim
emergency services, aircraft cockpits, assistive tecyies, interpretimportant audio features.
climate sciences [3], elite sports [4], multimodal intehee In biomedical applications, low-level sonification haseoft
been used for providing audio feedback for heart rate vari-
The authors are Wifh the vision lab. of the Dépa}rtementfdrmatique’ ability, Doppler ultrasound and electroencephalograjityes
et de Recherche Opérationnelle (DIRO), Universiteé de fab, Faculté . S .
[10] and sometimes used for manual positioning of surgical

des Arts et des Sciences, Montréal, H3C 3J7, QC, Canadaailg:m | ) b
ohini.kafui.toffa@umontreal.ca, mignotte@iro.umoatrea instruments and surgical navigational system [11]. Fewkaor
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have been dedicated to image sonification except [8], wheréha luminance or value (V) of the pixel, the signal'spectral
sonification of each segmented nucleus (parameterizeddy tanvelope is controlled by the saturation (S) (from a sindisoi
discriminant statistical geometric feature-based patarsg to a square wave for the lowest to the highest saturatioreyalu
is presented to the cytologist, in a complementary auditoaynd the hue (H) is mapped into the fundamental frequency of
form, to improve its diagnostic accuracy. Following the santhe synthesized sound. In [25], different sonificationtegas
principle, Ahmadet al. in [12] use a sonification of optical for a guidance task were used to help participants to quickly
coherence tomography data, showing images of human brdast a vertical hidden target randomly placed on a virtual
adipose and tumor tissue, with the aim of distinguishing¢hehorizontal line on a pen tablet. Finally, in [26], the author
tissue types based on the rendered audio signals. proposed a mobile application that sonifies HSV color and
Recent research efforts have been devoted to using low-legeeyscale images and permits blind children to recognize on
image sonification to produce a navigational system to assa& interactive screen a straight line and a curve.
and improve blind and visually impaired people’s mobility i In this work, we present a new image sonification system
terms of safety and speed. A portable wearable headgeadbadbat strives to help visually impaired users access visual
device with cameras located slightly above the positiorhef tinformation via an audio signal. The visually impaired user
eye in [13] and a mobile tablet with two cameras in [14] havean explore the image on a touch screen and receives real-
been used to build a vision assistance system that uses dejptle auditory feedback about the image content at the curren
inferencevia real-time stereo matching and a depth-to-soumbsition. The proposed system works in real time and is
mapping to inform the user of the surroundinga sound. intuitive. We use perceptually meaningful mappings, inckhi
In the vOICe [15], the image is captured using a single videbe properties of an image are directly reflected to the audio
camera mounted on headgear, and the captured image, gossibmain in a very predictable way and can be easily extracted
a depth image as proposed in [16], is scanned from left td righy the listener that can draw conclusions about the image
for sound generation (with the sound loudness depending loyy decoding the sonified result. To this end, the audio signal
the brightness of the pixel). that is generated tries to capture the most useful infoonati
Exploiting disparity data with a sonification system i®f an image, such as low-level image processing cues (
interesting to assist the mobility of visually impaired péoto color edges and texture) and mid-level cues (histogramef th
bypass obstacles and hazards when this depth informatiomyiiadient) at a low-level (at the pixel level) and high-lewél
available, and some efforts have been made in this regardjrEermation obtained from an efficient segmentation aldponi
mentioned above. Nevertheless, few works have been prdpoet represents the image content in different sub-parts or
to aid a visually impaired user to recognize objects in egions of coherent textural properties. The proposed odeth
(synthetic or) natural image (or painting) or, more modesti uses mainly musical notes at several octaves, the notion of
help visually impaired persons perceive some charadtevisttimbre, and loudness but also the pitch, rhythm and distorti
of the main shapes, shown in an image, in terms of colaffect in an intuitive way to sonify locally and globally
luminosity and texture, which would allow them then to drakhe image content. Such system could be useful to visually
some conclusions about the content of the image (or videopaired persons by providing a special translation expee
frames). of paintings in a digital museum or an interpretation of the
In this context, Martinset al. [17] was the first to sonify image of a live event received on a mobile phone.
a single texture pattern with a periodic audio signal. Then,
chronologically, Yeo and Berger [18] used an image soni-

fication technique based on simple raster scanning of the : . I
image to generate a sound whose loudness linearly fits théo‘ well-designed real-time sonification system must be fast

brightness value of the scanned grayscale image pixels.,leCe It computes a_sound for_a position that varies in the
similar approach was used in [19], in which pixel values argage as aprobe while presenting the rg;ult by_means of

translated into a musical notes. Ivan and Radek [20] pregen€ither headphones or speakers. The sonified audio result mus
a simple sonification method for mapping color information tCaPtUré as much reliable information as possible about the

II. SONIFICATION MODEL

a frequency oscillator, where color information was mappd@@d€ On many levels of abstraction, ranging from low-legel

to the wave envelope, waveform and frequency of a sourffgh-level f"md comb|.n|ng low-, mid- and h|gh-l.e.vel featsied
Yoshidaet al. in [9], presented a sonification methodolog ach 'F’Ca“on of thg image. Above a_II, th? sonified sound_ must
based on edge gradients and distance-to-edge maps etral geloglcal and conS|ste_nt and make_lntumve sense. Thenlést
from an image andia a mobile touch-screen device. Mordnust be able to effectively and quickly extrace( interpret
recently, in [21]-[23], the authors used the concept of cold" real tlme)_ |mp0rt§nt a_\r_wd dls_cr|m|_n_<';mt visual featureshlf_
color mixture with the combination of acoustical entitiexda 'M29€, easily and |ntU|t!ver |dent|f|aple, from thg sortfie
the grade of roughness on pre-classified natural regions a{ﬁﬁu,lt in order to draw simple and reliable conclusions &bou
edges with drum rhythms in their sonification system. Ahe image conten.t. To.do that' we must propose p(_erceptually
sonification tool proposed in [24] starts by scanning theléma Meaningful mappings in which the properties of an image are
image from top to bottom and produces a sound for each r&{wectly reflected in the audio domain in a very predictable
of the image that plays in sequence and that consists of oth&@:

elementary sounds; more precisely, the authors used the HS\Our sonification model first relies on segmentation of the
color space, and in this space, the loudness is determinedifopge. This allows us to obtain a high-level representation
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primary hue, while the hueyellow is composed of equal
guantities of (primary hues) red and green.

2) Saturation:is a measure of how intense or pale a color
appears, and this concept is governed by the amount of white
it contains. This term is generally used to describe thetyuri
of a color. For examplepink’ is a tint of the colorred’ to
which betweenl0% and70% of white has been added.

Fig. 1. The HSL color space with the hue component that isnged in 3) Lumln?‘nce:Lumlnance _Can also beldescrlbed by words
a radial slice (starting at the red hue G, passing through green aeoe  such as bright or dark. This concept is dependent on the

and blue a240°, and then wrapping back to red 360°) around a central gmount of energy that is being radiated. Thus, darkness is
axis of neutral colors, which ranges from black at the bottmmwhite at a Iower-intensity shade of a bright red.

the top. The HSL representation models how colors mix tagetiith the

saturation dimension 'resembllng_vanoqs shades of_ bwgiuﬂoreq paint and This color space is suitable for describing a gradient oorcol

the luminance (or brightness) dimension resembling theturgs of those _ . . .

paints with varying mounts of black or white paint. variation in space or time. For example, it can be seen that a
cookie becomes more brown as it is baked: its hue remains
relatively constant, but its luminance and saturation glean

of the image to be sonified in which different sub-parts aturing cooking [29].

homogeneous regions of coherent textural properties are lo

cated. To this end, we suggest using the reliable segmentas. Choice of the Frequency Sampling
model proposed in [27], which is freely available on the Web In our application, we use a sampling frequency fof—

éalth%UQh Elny Othb?’r ”?Ode_' Cr?UIS b_e _useci)l. ]:I'his ”_“e”:‘\’/d f%384 samples/second, which allows us to model a maximum,
ased on the combination, in the Variation of Informatioalf the Nyquist frequency o8kHz, that is used in most modern

sc;ns_e, gquuulf]kly gndlé?ughly estlmatedd segr‘;:entart:or_\ E2SWoip (Voice over Internet Protocol) communication product
obtaine ydt. edgflfmp —mgans prloce ure w eln the Imagg g which is sufficient to model complex audio signals. In
IS expressed in di _erent and comp em(_entary color Spadss. Eddition, human sensitivity to frequency information ab&v

each identified region or subpart of the image, a differedi@u kHz is rather limited, and conveying information above this

sound, lasting one second, and repeating itself in a loopras | high frequency remains perceptible by healthy human ears

as thepointer (whose position is c_ontrolled .by Fhe MOUSEyt is very sensitive to environmental external noise an th
the keyboard or a touchscreen device) remains in this regdiofkicult to decode [30]

will be generated with different characteristics, which mav
explain.

Since we want to generate an audio signal that lasts 1
second withf., we have to generate a total 6384 sound
samples, which is also a power of twd6484 = 2'4) and
] which will allow us to then efficiently use an inverse FFT Fast
A. Choice of the Color Space Fourier Transform (since our sound mapping will be generate

First, we have to select a suitable color space in whidh the frequency domain) and to fully givieoctaves with the
we intend to extract our low- and mid-level discriminatindtighest frequency given by E)8-key grand piano. With this
visual features on each presegmented region of the imageecification, let us note that the frequency resolutionwof o
In this sonification system, the HSL color model is use8onification model isA f = 1Hz.
as an ideal intuitive color model, which better describes th
human perception of color than the RGB model [28]. It waS. Sonification Mapping
designed in the 1970s by computer graphics researchers t§he gifferent steps of our sonification approach are the
more closely align with the manner in which human ViSiO'FbIIowing:
perceives color-making attributes. In fact, the HSL colmace . . .
can be easily understood, since it is the color space that ca ) Hue Translation:The core of our somﬂc:’_;\tlon mapping
best be explained with words or simple concepts. Moreov&t ased on the seven musical note®-(e-mi-fa-sol-la-9

this is confirmed by the fact that this color space is also us88§S‘b'.y plﬁygg oq_ﬁ_e verr]al_ octaves atfonceéth]ics W“Lbeieixlf) :
by painting or drawing artists to naturally describe a col p Section Il- )- This choice comes from the fact that saver

or to describe the manner in which paints of different colo ind or visually impaired persons naturally develomasical

mix together. In this HSL color space (see Fig. 1), the visuSif' (certainly due to the cortical plasticity [¥]and are able

properties of a color can be described with words or simpﬁg easily identify every note immediately and in isolatioarh
ther played notes [32], [33]

concepts, such as Hue, Saturation and Luminance. Note #
any color space based on the Munsell color system [28], likela part of the core area of the auditory cortex was found to barged by

HSV, is a good candidate since it provides almost the samdactor of 1.8 in the blind compared with sighted humans.hScartical
visual properties reorganization may be a consequence of the absence of \ispad in
prop ’ combination with enhanced auditory activity.

1) Hue: is a term that one visually thinks of as an existingtzThe authors show that blind people perform better than etyntdividuals

. . . tasks related to pitch discrimination and pitch-timbagegorization and on
color that can be described with 5|mple words, suctred, a range of auditory perception tasks. This advantage wasngdss only for

‘yellow', ‘green’ or ‘purple‘. Red (or green) is a distinct pure,individuals who became blind early in life.
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in Subsection 1I-C1 with:

lr
Cr=| ] )
wherelr is the mean luminance value of the region gngl
the ceil function. For example, ifr = 100, it implies the
octave(C, with the standard so-callebliddle C octave[34]
comprised within the rangfbo = 262Hz — Si = 494Hz]. If
" lr = 180, it implies the octave’; with the so-calledSoprano

Fig. 2. Hue Translation: the re-quantized seven-bin hutodriam of each c OCtaveUSing the rang¢D0 = 1046Hz — Si = 1976HZ]-

region is first estimated and then converted into an impulsetfon weighted ; s ; ;

by the corresponding value of the histogram, in the frequedomain, 3_) Saturation TranslatlonSmc_e this concept d‘?scr'bes the
centered on the frequency corresponding to the differetesnof the musical purity of the color (high-saturation colors look rich whase
game. full- and low- saturation colors look dull and grayish; seg.F

1), we translate this concept in audio space by adding to the
Importantly, HSL offers the possibility to code a Cc)lmsound previously generated more (for low-saturation &)lor

using a precise note with only the H color channel (hue) aré)éefesv(v)ern((jfori]g;gh;algjsr:tlonrézoll\c/)lgs})eharrgzrglcs, tLheuzgggrl;t'on
linearly (more precisely radially around the circle of thane) u pure. preciset, urat

with a semantic (well-understood) expression.(0-Red, 60- ya}[Iue, :nltlallﬁz\;n Fhe mterv?[g— 2‘?‘5]"' 'S d.|V|ded into8 equal
Yellow, 120-Green, 180-Cyan, 240-Blue, 300-Magenta, 368" V&S, andys IS compuled as Tofllows.

Red) (see Fig. 2). Additionaly, in this color space, coloithw N7 |SE @)
the same hue can then be distinguished semantically with s 32

adjectives referring to their saturation and lightnesst jas heresx is the mean saturation value of the region dnf

our sonification system will be able to do but with differen . .
y e floor function.N, represents the number of octaves; in

sound characteristics (such as octave and harmonics),llas wi ... . . . .
. addition to the one in that is playing the sound previously

be explained later. : . . :
M . . o , , generated (see Subsection 11-C2), we duplicate this nextur
ore precisely, in our application, the hue information o .
L . ._of notes on several other (closest) octaves. For example, if
each region is first modeled by a normalized re-quantized < 994 imolving N. — 0. the pure sound created on onl
histogram with seven (one for each note) equal-width bf)rﬁe octave ?Sy gnersat_ed, i —plOO molving N. — 4- 4 y
(in the hue interval) as a hue feature vector. In this simpler g TR~ PlyIng Vs = =

model. the texture of each pre-seamented reaion is hergﬁpplementary octaves (the closest to that estimated in Sub
' P 9 g section [I-C2) are added to the initial sound with a weigtin

characterized by a mixture of hues, or more precisely, b . )
the values of the re-quantized hue histogram. This model"jfgsnplltude of /N (i.e, 1/4 for our example (see also the

simple, quick to compute, and allows significant data reidact example given in Fig. 3), making the generated sound less
. . . . .~ _pure
while being robust to noise and local image transformation8
Once the seven-bin histogram is computed, each of these
seven re-quantized histogram values is converted into arls(f)
impulse (or Dirac delta) function weighted by the corre--1;-
sponding value of the re-quantized histogram (see Fig. 2)
in the frequency domain. More precisely, the first, second,
.., seventh values of the histogram are converted to an
impulse function centered on the frequency corresponaing t

bo Ml FA sl
)

L]
392Hz
440Hz

L]
494Hz f

L]
330Hz
z

262Hz.
29 349Hz

s(f)

the different notes of the musical gameg., 262Hz (Do), Beplcaton on o oeiaces with ampitude LS

294Hz (Re), 330Hz (Mi), 349Hz (Fa), 392Hz (Sol), 440Hz DOT 00 I I DOT
(La), and494Hz (Si), respectively (represented by the white [ 5 —=————trhe sl le e Lo o
keys of a piano keyboard for the octagg Middle C [34]), in Octave G, T octave Gs tenon

a manner such that in the temporal domain, the mixture of hgg. 3. saturation Translation: In addition to the mixturenausical notes
of each region will be translated by a mixture of pure tonesnerated by the hue value (see Fig. 2), we duplicate it oerakwther
or musical notes (easily identifiable by a visually impaireffloses) octaves according to the saturation value. Fample, ifsp = 170

. ~implying Ns =2 (see Eq. (2)), we duplicate this mixture on the two closest
person) played together in a manner that sounds harmonigktgves ofc, (with a weighting of 0.5).

and determining the the so-callpidch of the generated sound.

2) Luminance TranslationSince this concept is dependent 4) Roughness Texture Translatioim order to aid the user’s
on the amount of energy that is being radiated (cf. Sectiomderstanding of the possible roughness (due to the presenc
[I-A3), we thus bring this concept closer to the differentf gradients) of a textured region to be sonified, we can
octaves of vibration of a piano. To this end, the luminanadter the purity of the sound signal, thanks to the concept of
value, initially in the interval0 — 255] is divided into8 equal distortion. This can produce\dbrant, rhythmic growling, or
intervals, and each interval is assigned the name of an ectayitty tone depending on the type of distortion used. This effect
scaleC,, [34], in which is played the musical notes definedan efficiently (and intuitively) model the grade and styfe o
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roughness of each pre-detected region. Audio signal befare histogram gradient trandlation
More precisely, we can consider two different types of rough 5 b B il
ness properties of a region that can be quantified by two §
statistical features. The first one is the mean of the modile o
the first-order gradient within the region (defining the glbb 7} !
roughness of the region), and the second is the varianceof ST weighted by:

orientation (following the four main directions) of the §fr § " _: }
order) gradient module (hence quantifying the presence ° ..

man-made geometric structure, such as a manufacturedtob v s e e o

Amphuge

or an un-natural texture). qives

e In our application, the first type is created by magnitude
distortion by adding (noisy) randomized harmonics. This ca
be simply done by adding, to the frequency bins with null
amplitude, randomized values within the inter{@l, p] with
p proportional to the mean of the module of the first-order -
gradient within the region. Audio signal after histogram gradient translation

e The second type can be created by phase distortion fBg. 4. The histogram or distribution of the amplitude of tiradient module
: . - within the considered region (to be sonified) is used to weigh temporal
adding (n0|s_y) random!zed valup-3 , A] to the phase envelope of the audio signal.
spectrum, withs proportional to the variance of the oriented
(in the four directions) module of the first-order gradient
within the region. in the example of the region given in Fig. 4. See Algorithm 1

for implementation details.

5) Translation Into Temporal Spacednce the hue, satu-
ration and luminance and the mean gradient module of each
region have been mapped in the frequency domain and ex- I1l. EXPERIMENTAL RESULTS
pressed in in terms of the magnitude spectrum véciod the . T
variance of the oriented gradient in the phase spectrunorect In our experlments, we have tested our somﬁcatlpn
(thus defining the audio signal’s spectral envelope (wh&h :fllgonthm on Some Images fr_om the Berkeley segmentation
related to the perception timbre), after Hermitian symmetry database (BS800) [35]. This image-base has both a great

is imposed on the magnitude and on the phase spectrum,‘(ﬁéiabmty of naturally colored and textured i”_‘ages and
return to the time domain, with a simple inverse fast Fouri&r good (”?a”“a”y hand-segmen.ted) segmentatlgn for each
transform (FFT), to ges(). image. This allows us to objectively analyze, discuss and

highlight the pros and cons of just our sonification process.

6) Histogram Gradient Translationin Section II-C4, we Nevertheless, in the absence of a segmentation map for
have sonifiedyia the distortion effect of the audio signal, theeach image, we can use any automatic segmentation model
mean and the orientation variance of the gradient magnitugied especially the one proposed in [27] which obtains a
as two different features related to the gradient-basebmegsegmentation score, in terms of the Rand Index equals to
activity. Another important visual cue that remains to bg.81, meaning that on averag®]% of pairs of pixel labels
expressed by sonification is the histogram or distributibn @re correctly classified compared to the segmentation maps
the amplitude of the gradient module. A way to express thif the BSD300, considered as ground-truths.
visual cue and to give it a meaningful, interesting audiecff
is through the notions of rhythm and loudness of the sonified|n our tests, we sep and 8 (Section [I-C4), 5 times the
sound. To this end, and in order to sonify this information tmean of the module of the first order gradient and 5 times
the user, such that it is easily decodable, we use the fallgpwithe variance of the oriented module of the first-order gratglie
strategy: we first compute a re-quantized histogram using t&spectively. A high value op (Section 11-C6) reduces the
equal-width bins of the first-order gradient module and usgfect of the gradient interpretation on the signal envelop
this histogram followed by its mirror projection to weiglfet while a small one increases the risk of signal with silence.
1-second temporal envelope of the audio sigifa) (see Fig. \We then useg = 10% as a good trade off. Note that those
4). values are empirical.

More precisely, in our application, we keep a percentage
of the original signal (characterizing and encoding thegma
low-level visual features listed in previous points 1 to&)d A. Discussion

the weighting is applied for the oth@f0% — p of the signal.  \when we position the pointer (controlled by the mouse
This allows us to avoid generating signals of total siler&=®, or the keyboard) in the middle bottom and left border of
the image shown in Fig. 5.a, we can easily recognize and
*Algorithmically, since Af = 1Hz, in our application (with a sampling thys |ocalize two regions associated with a pure tone sound
frequency off. =16384 and 16384 sound samples; see Section II-B), it b0|Is(Iasting one second, and repeating itself in a |00p) with a

down to filling a 1D vector of length 6384 by simply putting an amplitude = ) )
value in the n-th cell for the frequency nHz. specific frequency corresponding to the musical riotefor
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(a)

Fig. 5. (a): Image numbei 98023 from the BSI300 Berkeley database [35] (left) and its segmentation (righith the spectrogram of the generated sound
when the user examines the image from left to right starthognfline 320 and from top to bottom starting from columin0. The frequency resolution of
the spectrogram i€\ f = 20Hz, and the spectrogram ranges froidz to 2 kHz (horizontally for the left one and vertically for the t@me); the data are
represented with the thermal (false-) color scale shownherfdr left.(b): Some audio samples generated at different locations ointlhage.

“AudioSigB6000_col160rowda dat

the red part of the wool turtleneck sweater of the woman
and the specific notéa for its two blue parts (at the left
arm and neck) (see Section 1I-C1). We can easily also guess
the homogeneous black part of the sweater since the emitted
sonified sound mainly vibrates at the bass tones (see Sect.
[I-C2 (low frequencies), but with several other harmonics
(with smaller amplitudes) (cf. Sect. 1I-C3), indicatingeth 2 I
presence of a very low luminance and very saturated colors -
such as black. Let us note that this part can be distinguished
from the background that is dark since the latter region is
a uniform dark region without gradient (unlike the sweater
region), and thus the temporal envelope of the sonified sound
is different (see Fig. 5.b). We can also easily localize tload

hair of this person since the sonified sound is also a pure
tone corresponding to thRe musical note, but with a slight
magnitude distortion effect due to the presence of a mean
gradient in this particular region (cf. Sect. 1I-C4) and ghu
sonifying the particular textural roughness of this reganmd

also distinguishing the hair region from the facial area€eled,

the lightness of this part is more important, the saturatson
lower, and the distribution of the gradient is radicallyfelieént

(see Fig. 5.b), thus generating a very different tempora¢en _. . Images numbea) 12003, (b) 86000, (¢) 277095 and (d) 134052

. R . . Fig. 6
lope for the S_Omf'ed S'Qr."al-_ We can easily draw the outline ‘f}fm the BSI300 Berkeley database [35] with some audio samples generated
the person without ambiguity. Finally, the background, g0 at different locations of these images.

area looks like a sort of fence, is associated with a sound
that is a very complex sound (highly saturated) with a lot of

(amplitude and phase) saturation (cf. Sect. 11-C4) and with o o _ ) _
very peculiar temporal envelope, creating a kind of scratc/@nd third images are very similar (despite a slightly defer

noisy sound that grumbles regularly every half second ansl tHfexture, demonstrating that our proposed sonificationesyst
representing appropriately the regular grilling. generalizes well across regions from the same semantic con-

Fig. 6 shows four images from the BSG) Berkeley cept or label) and also characteristic of a man-made streictu

datab ith di | ted at diff Witp geometric and regular patterns. The sound emitted by
atabase With some audio samples generated at ditier, by the starfish or its background is very rich and complex

locations of these images. Figures (a) and (d) share the Saltk amplitude and phase distortion characteristic of clemp

semantic concepts as do (b) and (c). We can notice that Egetures. Nevertheless, we can hear easily in them the alusic

audio results generated at the sky of the second and thy es Do-Re for the starfish and Mi-Fa for the background in
images are very similar and very characteristic. Similahg relation to their respective hue

sonified sound generated for the modern building in the scon

AdoSigER000_Cog1ron30 dat <IW

1 - e O £ aon . - 0

“AudioSig134082_col145row140.dat

5
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B. Validation — Pitch
To validate the sonification model, we obtained a certific
of ethics from the Université de Montréal and performed — Octave
pilot study (easily reproducible, from the BSD300, to faatke
- Purity

eventual further comparisons with future methods) with
volunteers (students and nonstudents). Note that each
lasted approximatively 1h, and each participant was ireelv
in a minimum of two tests. This puts constraints on a perso
availability and capacity to stay motivated along all thstde
and reduced the number of different participants and the _ o o
. Fig. 7. Experiment |: Calibration and training image
number of test samples. Due to some constraints, we Wers
unable, unfortunately to include blind persons in the stud
However, we believe that if sighted people are able to perfo
well on our system, blind people will do better since the
demonstrate better ability with sounds [32], [33]. In aleth
experiments we masked the images to the user with a bl3
screen. '
The study consisted of multiple experiments: mapping pro-
erties recognition, scene description, form detectioragen |
categorization and a longitudinal study. In the experirae
all subjects explored the very same images but with differe
orderings to avoid presentation order effects. Only onéhef t
subjects had anusical eay and none of them had a training
session beforehand.

= Distorsion

Rythm &
Loudness

Fig. 8. Experiment |: Mosaic of testing images

. . . . training time and practice, a better result could be achias
1) Experiment | (Mapping Properties’ RecognitionA we wiI?demonstrgte in Section [11-B5.

callprathn 'mage (Fig. 7) containing five rows (pitch, aea .We observed that combining all the properties slightly etéed
purity, distortion and loudness) was presented to the stbj e precision of each property, especially, for a nonmusica
in order to train him with the system. For each row, the mode ' '

related property was activated, and the subject scanned ?ﬁaé For gxample, a Iow—saturgtmn 'mage, mtroduces_lmghe
! . . ctaves Yia the added harmonics), which makes the image
row horizontally in order to learn the behavior of the soun%

based on the property. The learning session of the selec oamds more acute, as does having a higher luminosity. Thus,

e . ‘e . . .
Lo . . ItIs sometimes difficult to identify whether the acuity ofeth
property lasted approximatively 5mn. Immediately afteis th fy Y
session, the user was tested on the selected property u

gﬁgerated sound is due to the luminosity or saturation of the

a dozen square images, masked by a black screen, from ﬁg rce imagei €., the pitch of the musical note or the presence
L . S . 0

calibration (Fig. 7) and mosaic (Fig. 8) images.

%armonics). We also observed that for a nonmusical ear, it
is difficult to detect the color (or the pitch) when the sousd i

After all the properties had been separately tested, Vr\peamly composed of very low or very high frequencies.

activated all the properties in order to test the effects of 2) Experiment Il (Scene Description)n experiment 11,
the combination. The user was presented each square offi@e participants from experiment | were given 5 minutes

mosaic (Fig. 8) for identification. _ to explore the images shown in Fig. 6, without further infor-
Five volunteers participated in the experiment, and thelt®s mation. These images were selected to check whether their
of the testing are reported in Table I. description fits the interpretation we performed in Section
llI-A. At the end of the exploration of each image, the
Property Question Single | ATl participar_1ts h_ad to provide an _oral descri_ptior_1 of the scene
Pitch What is the color of the square ? | 62% | 51% as they imagined it. A qualitative evaluation is reported in
(lzctffwe %s tﬂe square dark or g_ghtz 323 ggg Table 1l. We can notice that the subjects were able to easily
urity s the square pure or dirty ? 0 0 ; ; ; ;
Texture | Does the square have a texture 7 | 92.0% | 72% recognize the shapes of the obJe_cts, but fa|_led sometimes to
Toudness Is the image contrasted ? 90% | 69% recognize the color when the object was highly textured or
TABLE | too dark.

RESULTS OF EXPERIMENT . . . ) .
3) Experiment Il (Form Detection):During this experi-

ment, eleven subjects had a training of 5 min with the mosaic

As we can observe, the detection of the colors usingiage (Fig 8). Only two of them were also involved in
the pitch, was difficult for the participants while detegtin experiments | and Il. We selected from the database four
other properties was easy. This is explained by the fact thatages (Fig. 9) that contained different objects in terms of
distinguishing between low and high frequencies or thellefze shape and number. The participants were given 5 min to
the volume is easier than detecting 7 musical notes. Witremaxplore each image. They had to then say, based on their
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Tmage | Subject | Description (@) (b) © (d)
1 A yellow textured object with spikes on a dark (a) | 0.55 0.27 | 0.18
(a) background. Could be a flower or a homehouse. (b) 0.91 0.09
2 A bright textured form with spikes on a dark back- (c) | 0.36 0.64
ground. No idea of what it could be. (d) ] 0.09 [ 0.09 | 0.09 | 0.73
3 A very textured clear form in the shape of a star on
a green background. Green sky? No idea of what it TABLE Il
could be. CONFUSION MATRIX OF EXPERIMENTII
1 A vertical pointed shape with a light red texture on
(b) the top and a dark one somewhere on the bottom. A
blue background on the top. Could be a pyramid or
a head with a pointed hat. from the previous experiment. They had to group them into
2 A vertical textured shape with a blue colored back- . . L
ground on top. Could be a bust of a man. pairs based on their global similarity in terms of the sounds

3 A Tight red texture in the shape of a bottle. A clear | heard. This third test permitted validating the mappinghef t
background with no texture on the top. Could be a | \whgle hierarchical visual features (regions, edge, cotors
bottle or a flower. .

texture) into sounds.

1 A centered vertical shape textured in red. A clear
(c) blue background on the top. Could be a trunk.

2 A standing elongated red form, very textured. Could
be a tree trunk.

3 A vertical dark textured shape. A clear background
with no texture on the sides and top. No idea of what
it could be.

1 A horizontal red textured shape on a green dark

(d) background. No idea...a landscape?
2 A horizontal bright textured shape centered on a

green dark background. Could be a bird in the
countryside.

3 A light textured shape centered on a dark back-
ground. Could be a homehouse.

TABLE Il
RESULTS OF EXPERIMENTI

exploration, if the image contained a long ostrich’s neclain
plain, three vertical sculptures in a garden, a vase laithaga |
wall or six umbrellas on a terrace. The goal of this experimen () (e) (f)
was to check if the information about the regions and edge

: : ig. 10. Experiment IV: Image numbe(a) 41069, (b) 42044, (c) 61060,
detection was properly conveyed in the model. (d) 304074, (e) 42078 and (f) 176039 from the BSDB00 Berkeley database

[35] grouped vertically by visual similarity.

@ [ ® [ © (d) [©) ()
(a) X 0.09 | 0.73 | 0.09 | 0.09
®) X 0.00 | 0.73 | 0.18
© X | 0.09 | 0.18 | 0.64
@ X 0.00
(e) X
! o St ® X
(a) (b) (©) (d) TABLE IV
Fig. 9. Experiment Ill: Image numbel®) 66075 (a long ostrich’s neck in ASSOCIATIONMATRIX OF EXPERIMENTIV

a plain), (b) 101085 (three vertical sculptures in a garder§) 227092 (a
vase laid against a wall) an@) 242078 (six umbrellas on a terrace) from

the BSD300 Berkeley database [35]. This test was more difficult than the previous one because

it required the subjects to memorize many tones per image (3

The confusion matrix for the results of test Ill is showPn @verage). The association between the two images was not
in Table IIl. Most of the subjects were able to associate tfgraightforward since several tones characterize an imayk

images to the correct content. The greatest confusion was 8¢ challenge was to use the dominant tones as a reference.

the vase and the ostrich’s neck, since both have a similt€ results presented in Table IV indicated that some people

vertical shape in the subject’s imagination. The conteat th@SSociated a bright image with a dark one because they heard

was easily identified was the three vertical sculptures in %4 low-frequency sound in some part of the first one. Others
garden (image (b)). associated a blue tinted image with a red one because both

contain high-pitch sounds, and it is not easy to distinguish

4) Experiment IV (Image Categorization)During this musical notes at such high frequencies. However, the ntajori
experiment, three pairs of images (Fig. 10) that look simil®@f people grouped together the red tinted (a) and (d) images
were presented (5 min per image) to the eleven participalisgh-pitched Do sound), the dark (b) and (e) images (very
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saturated low-frequency sound), and the blue-dominarar(d)
(f) images (high-pitched La sound).

5) Longitudinal Study:Two participants who were involved

(3]
(4

in all four previous experiments were allowed to use thgs)
system for a long time in order to observe their progression
and learning curve. After they had used the system for two
or three additional hours, they were able to easily disiisiyu [6]
the colors using the pitch. They improved their result on the
combination testing (Section 11I-B1) by an average20f%.
They appreciated the research in the following terms:

Participant 1:1 improved myself by taking the calibration test

multiple times. | liked the mosaic testing, but it was with(®!
the scene description experiment that | better understbed t

usefulness of the research. This could be helpful for vigual[9]
impaired people.
Participant 2:1 especially liked the scene exploration tasks

(Experiments 1l to IV). It made me more imaginative ango]
helped me see the utility of the project.

IV. CONCLUSION

(7]

(11]

In this paper, we have presented a new image sonificatiﬁgl
system that provides an intuitive mode of obtaining visaaél
spatial information and some context information about an

image for visually impaired persons. The proposed systera ud®

a set of hierarchical visual features about the image conten
at different levels of abstraction and perceptually megtfuh
mappings based on the additive synthesis technique, in
spectral domain; it uses the concepts of timbre, loudnéss, p
rhythm and different distortion effects to translate thpesn-
ance of each individual pre-segmented region of the imaige iro]
the audio domain. The proposed system allows us to easily
localize different regions and classify regions into maaede [16]
and natural regions, sometimes with automated man-made
object recognition. This system can be complementary tb-hiqﬂ]
level image sonificationig. an automatic verbal translation
model), which is prone to errors and with which the listener

can also miss all the richness, subtleties and complexifies

the underlying visual information.
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Variables
Rnaz Maximum number of regions
NHue Bin number of the hue
NGrad Bin Number of the gradient
Nsamp Number of samples 16384
R[] Regions of Segmented Image
Y Current Region label
Yoid Old Region Label
Pos,, Pos, Cursor Position
Hr[1[1 Mixture of Hue of size Riaz * Ngwe
Grlll] Mixture of Gradient of size Rimaz * NGrad
Sr[] Saturation table of length Ryqq
Lrg[] Luminance table of length Ryqqx
GMRg|] Gradient Mean table of length Ryax
OGRrl] Oriented gradient table of length Ryqx
Nrregll Notes Frequencies of Octave C4 of length 7

Mpreq[], Prreql]l  Sound samples of length Nsamyp

Initialization

Load Image and Convert to HSL

Compute or Load Image Segmentation to R
for each region 1 < Rmas do

Hg[r] + ComputeHueHistogram()
GRrlr] < ComputeGradientHistogram()
Sr[r] + ComputeSaturation()

Lg[r] < Compute Luminance()

GMpg[r] + ComputeGradient M ean()
OGR][r] < ComputeOrientedGradient()

end

Wait For Event
while user input and not exit do
Posy, Posy < GetCursorPosition()
y < R[Posz][Posy]
if y <> yoiq4 then
GenerateSound()
for i < Ngye do
1. Translate hue and luminance
Cy - [ 28]
Mpreq| Nrreqli] ¥ 29| < HR[y][i]
2. Translate saturation
N, 7|2zl
for | < Ns; do
MFreq \_NFreq [Z] % 2Neighbors(Cn,l)—4J «
HRgly][i]/Ns
end
end

for k < Nsamp/2 do
3. Magnitude Distortion
if Mpreq[k] =0 then
a =5 rand() * GMg[y]
MFreq[k] <~ a/NSamp
en
4. Phase Distortion
dﬁ = 5% rand() * OGR[y] Prreq[k] < B/Nsamp
en
HermitianSymmetry(Mpreq, Prreq)
Sound < IFFT(MFpreq, Prreq)
5. Translate Gradient Histogram
Sound < Weight(Sound, Gr)
PlaySound()
Yoid <Y
else
PlaySoundIfNotPlaying()

end
end

Algorithm 1: Image Sonification



