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Abstract—This paper presents a new image sonification system
that strives to help visually impaired users access visual infor-
mation via an audio (easily decodable) signal that is generated
in real time when the users explore the image on a touch screen
or with a pointer. The sonified signal, which is generated for
each position within the image, tries to capture the most useful
and discriminant local information about the image content at
different levels of abstraction, ranging from low-level (at the
pixel level) to high-level (segmentation) and combining low-level
(color edges and texture), mid-level and high-level (gradient or
color distribution for each region of the image) features. The
proposed system mainly uses musical notes at several octaves,
the notion of timbre, and loudness but also uses pitch, rhythm
and the distortion effect in an intuitive way to sonify the image
content both locally and globally. To this end, we use perceptually
meaningful mappings, in which the properties of an image are
directly reflected in the audio domain, in a very predictableway.
The listener can then draw simple and reliable conclusions about
the image by quickly decoding the sonified result.

Index Terms—Sonification, visually impaired, sound synthesis,
auditory feedback, audio mapping.

I. I NTRODUCTION

SONIFICATION is the translation of data into sound. More
generally and precisely, it is the use of non-speech audio

to convey information or perceptualize data. In fact, this field
has greatly progressed over the past century and currently now
constitutes an established area of research. One of the earliest
and most successful applications of sonification is the Geiger
counter, which was invented in1908 and which uses the rate of
clicking to convey the level of radiation being detected in the
immediate vicinity of the device. One of the most recent and
technologically advanced applications is SONAR [1], which
uses echo location, very similar to that used by bats and marine
mammals (whales, dolphin, etc.), to convey information about
the 3D underwater environment, not only about the geometry
(i.e., position, shape, orientation of one or several near or
far objects) but also, to a certain extent, about the surface
properties of the detected objects, the nature of the sediments
lying on the seafloor and/or the structure of the seabed. With
the evolution of the computing technology and the presence
of tactile screens, smartphones, tablets and wearable devices,
sonification has become more interactive [2] and is used in
emergency services, aircraft cockpits, assistive technologies,
climate sciences [3], elite sports [4], multimodal interactive
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et de Recherche Opérationnelle (DIRO), Université de Montréal, Faculté
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environments [5], engineering analyses and simulations and
interpretations based on the sonification of physical quantities
[6].

Hence, the idea behind image sonification is to find ways
to translate the image data, which describe shape, color and
texture (sometimes depth information), into sounds. This is a
recent field that has naturally emerged after the development of
image and sound processing techniques. Such sonification may
be particularly useful for finding ways to represent information
that would be accessible to users with visual impairments.
This technique is also beneficial in circumstances where visual
representations would be impossible to use or to enrich a
graphical realization [7], for human-computer interactions
or for medical applications [8]. In these latter application
cases, auditory feedback can complement visual data without
requiring a surgeon to constantly monitor the screen or to
help him or her to understand critical and additional useful
information.

Previous work on image sonification can be roughly divided
into two categories. In high-level (symbolic) sonification,
visual information is translated into natural speech language.
This field is still in its infancy since it is very difficult today,
if not impossible, to fully understand the semantic contentof
all images. Let us note that the obvious limitation of such
sonification is that it is limited to images composed of objects
that have obvious semantic representations. For example, it
is not clear how to sonify complex shapes, color, textures
or variations of these visual cues and abstract drawings and
paintings. In contrast, low-level image sonification aims to
transpose image features or visual information into an abstract
non-verbal audio signal [9]. This work falls into this latter
category. Let us also add that this type of sonification can be
quite complementary to a high-level sonification type for the
previously mentioned reasons. Hence, image sonification can
be viewed as a data conversion or a data mapping between
the visual and audio domains. Nevertheless, it is crucial to
understand that the time-independent two-dimensional nature
of an image and the temporal nature of a sound makes
this conversion nontrivial, especially since a well-designed
sonification system must make intuitive sense, and the listener
must be able to effectively extract and discern and real-time
interpret important audio features.

In biomedical applications, low-level sonification has often
been used for providing audio feedback for heart rate vari-
ability, Doppler ultrasound and electroencephalography signals
[10] and sometimes used for manual positioning of surgical
instruments and surgical navigational system [11]. Few works
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have been dedicated to image sonification except [8], where a
sonification of each segmented nucleus (parameterized by two
discriminant statistical geometric feature-based parameters)
is presented to the cytologist, in a complementary auditory
form, to improve its diagnostic accuracy. Following the same
principle, Ahmadet al. in [12] use a sonification of optical
coherence tomography data, showing images of human breast
adipose and tumor tissue, with the aim of distinguishing these
tissue types based on the rendered audio signals.

Recent research efforts have been devoted to using low-level
image sonification to produce a navigational system to assist
and improve blind and visually impaired people’s mobility in
terms of safety and speed. A portable wearable headgear-based
device with cameras located slightly above the position of the
eye in [13] and a mobile tablet with two cameras in [14] have
been used to build a vision assistance system that uses depth
inferencevia real-time stereo matching and a depth-to-sound
mapping to inform the user of the surroundingsvia sound.
In the vOICe [15], the image is captured using a single video
camera mounted on headgear, and the captured image, possibly
a depth image as proposed in [16], is scanned from left to right
for sound generation (with the sound loudness depending on
the brightness of the pixel).

Exploiting disparity data with a sonification system is
interesting to assist the mobility of visually impaired people to
bypass obstacles and hazards when this depth information is
available, and some efforts have been made in this regard, as
mentioned above. Nevertheless, few works have been proposed
to aid a visually impaired user to recognize objects in a
(synthetic or) natural image (or painting) or, more modestly, to
help visually impaired persons perceive some characteristics
of the main shapes, shown in an image, in terms of color,
luminosity and texture, which would allow them then to draw
some conclusions about the content of the image (or video
frames).

In this context, Martinset al. [17] was the first to sonify
a single texture pattern with a periodic audio signal. Then,
chronologically, Yeo and Berger [18] used an image soni-
fication technique based on simple raster scanning of the
image to generate a sound whose loudness linearly fits the
brightness value of the scanned grayscale image pixels. A
similar approach was used in [19], in which pixel values are
translated into a musical notes. Ivan and Radek [20] presented
a simple sonification method for mapping color information to
a frequency oscillator, where color information was mapped
to the wave envelope, waveform and frequency of a sound.
Yoshida et al. in [9], presented a sonification methodology
based on edge gradients and distance-to-edge maps extracted
from an image andvia a mobile touch-screen device. More
recently, in [21]–[23], the authors used the concept of color,
color mixture with the combination of acoustical entities and
the grade of roughness on pre-classified natural regions and
edges with drum rhythms in their sonification system. A
sonification tool proposed in [24] starts by scanning the loaded
image from top to bottom and produces a sound for each row
of the image that plays in sequence and that consists of other
elementary sounds; more precisely, the authors used the HSV
color space, and in this space, the loudness is determined by

the luminance or value (V) of the pixel, the signal’spectral
envelope is controlled by the saturation (S) (from a sinusoid
to a square wave for the lowest to the highest saturation value),
and the hue (H) is mapped into the fundamental frequency of
the synthesized sound. In [25], different sonification strategies
for a guidance task were used to help participants to quickly
find a vertical hidden target randomly placed on a virtual
horizontal line on a pen tablet. Finally, in [26], the author
proposed a mobile application that sonifies HSV color and
greyscale images and permits blind children to recognize on
an interactive screen a straight line and a curve.

In this work, we present a new image sonification system
that strives to help visually impaired users access visual
information via an audio signal. The visually impaired user
can explore the image on a touch screen and receives real-
time auditory feedback about the image content at the current
position. The proposed system works in real time and is
intuitive. We use perceptually meaningful mappings, in which
the properties of an image are directly reflected to the audio
domain in a very predictable way and can be easily extracted
by the listener that can draw conclusions about the image
by decoding the sonified result. To this end, the audio signal
that is generated tries to capture the most useful information
of an image, such as low-level image processing cues (i.e.,
color edges and texture) and mid-level cues (histogram of the
gradient) at a low-level (at the pixel level) and high-levelof
information obtained from an efficient segmentation algorithm
that represents the image content in different sub-parts or
regions of coherent textural properties. The proposed method
uses mainly musical notes at several octaves, the notion of
timbre, and loudness but also the pitch, rhythm and distortion
effect in an intuitive way to sonify locally and globally
the image content. Such system could be useful to visually
impaired persons by providing a special translation experience
of paintings in a digital museum or an interpretation of the
image of a live event received on a mobile phone.

II. SONIFICATION MODEL

A well-designed real-time sonification system must be fast
since it computes a sound for a position that varies in the
image as aprobe while presenting the result by means of
either headphones or speakers. The sonified audio result must
capture as much reliable information as possible about the
image on many levels of abstraction, ranging from low-levelto
high-level and combining low-, mid- and high-level features at
each location of the image. Above all, the sonified sound must
be logical and consistent and make intuitive sense. The listener
must be able to effectively and quickly extract (i.e., interpret
in real time) important and discriminant visual features ofthe
image, easily and intuitively identifiable, from the sonified
result in order to draw simple and reliable conclusions about
the image content. To do that, we must propose perceptually
meaningful mappings in which the properties of an image are
directly reflected in the audio domain in a very predictable
way.

Our sonification model first relies on segmentation of the
image. This allows us to obtain a high-level representation
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Fig. 1. The HSL color space with the hue component that is arranged in
a radial slice (starting at the red hue at0o, passing through green at120o

and blue at240o, and then wrapping back to red at360o) around a central
axis of neutral colors, which ranges from black at the bottomto white at
the top. The HSL representation models how colors mix together, with the
saturation dimension resembling various shades of brightly colored paint and
the luminance (or brightness) dimension resembling the mixtures of those
paints with varying mounts of black or white paint.

of the image to be sonified in which different sub-parts or
homogeneous regions of coherent textural properties are lo-
cated. To this end, we suggest using the reliable segmentation
model proposed in [27], which is freely available on the Web
(although any other model could be used). This method is
based on the combination, in the Variation of Information (VoI)
sense, of quickly and roughly estimated segmentation results
obtained by the simpleK-means procedure when the image
is expressed in different and complementary color spaces. For
each identified region or subpart of the image, a different audio
sound, lasting one second, and repeating itself in a loop as long
as thepointer (whose position is controlled by the mouse,
the keyboard or a touchscreen device) remains in this region,
will be generated with different characteristics, which wenow
explain.

A. Choice of the Color Space

First, we have to select a suitable color space in which
we intend to extract our low- and mid-level discriminating
visual features on each presegmented region of the image.
In this sonification system, the HSL color model is used
as an ideal intuitive color model, which better describes the
human perception of color than the RGB model [28]. It was
designed in the 1970s by computer graphics researchers to
more closely align with the manner in which human vision
perceives color-making attributes. In fact, the HSL color space
can be easily understood, since it is the color space that can
best be explained with words or simple concepts. Moreover,
this is confirmed by the fact that this color space is also used
by painting or drawing artists to naturally describe a color
or to describe the manner in which paints of different colors
mix together. In this HSL color space (see Fig. 1), the visual
properties of a color can be described with words or simple
concepts, such as Hue, Saturation and Luminance. Note that
any color space based on the Munsell color system [28], like
HSV, is a good candidate since it provides almost the same
visual properties.

1) Hue: is a term that one visually thinks of as an existing
color that can be described with simple words, such as‘red‘ ,
‘yellow‘, ‘green‘ or ‘purple‘. Red (or green) is a distinct pure,

primary hue, while the hue ‘yellow‘ is composed of equal
quantities of (primary hues) red and green.

2) Saturation: is a measure of how intense or pale a color
appears, and this concept is governed by the amount of white
it contains. This term is generally used to describe the purity
of a color. For example,‘pink‘ is a tint of the color‘red‘ to
which between10% and70% of white has been added.

3) Luminance:Luminance can also be described by words
such as bright or dark. This concept is dependent on the
amount of energy that is being radiated. Thus, darkness is
a lower-intensity shade of a bright red.

This color space is suitable for describing a gradient or color
variation in space or time. For example, it can be seen that a
cookie becomes more brown as it is baked: its hue remains
relatively constant, but its luminance and saturation change
during cooking [29].

B. Choice of the Frequency Sampling

In our application, we use a sampling frequency offe =
16384 samples/second, which allows us to model a maximum,
the Nyquist frequency of8kHz, that is used in most modern
VoIP (Voice over Internet Protocol) communication products
and which is sufficient to model complex audio signals. In
addition, human sensitivity to frequency information above 8
kHz is rather limited, and conveying information above this
high frequency remains perceptible by healthy human ears
but is very sensitive to environmental external noise and thus
difficult to decode [30].

Since we want to generate an audio signal that lastsT = 1
second withfe, we have to generate a total of16384 sound
samples, which is also a power of two (16384 = 214) and
which will allow us to then efficiently use an inverse FFT Fast
Fourier Transform (since our sound mapping will be generated
in the frequency domain) and to fully give8 octaves with the
highest frequency given by a108-key grand piano. With this
specification, let us note that the frequency resolution of our
sonification model is∆f = 1Hz.

C. Sonification Mapping

The different steps of our sonification approach are the
following:

1) Hue Translation:The core of our sonification mapping
is based on the seven musical notes (do-re-mi-fa-sol-la-si)
possibly played on several octaves at once (this will be explicit
in Section II-C3). This choice comes from the fact that several
blind or visually impaired persons naturally develop amusical
ear (certainly due to the cortical plasticity [31]1) and are able
to easily identify every note immediately and in isolation from
other played notes [32], [33]2.

1A part of the core area of the auditory cortex was found to be enlarged by
a factor of 1.8 in the blind compared with sighted humans. Such cortical
reorganization may be a consequence of the absence of visualinput in
combination with enhanced auditory activity.

2The authors show that blind people perform better than sighted individuals
at tasks related to pitch discrimination and pitch-timbre categorization and on
a range of auditory perception tasks. This advantage was observed only for
individuals who became blind early in life.
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Fig. 2. Hue Translation: the re-quantized seven-bin hue histogram of each
region is first estimated and then converted into an impulse function weighted
by the corresponding value of the histogram, in the frequency domain,
centered on the frequency corresponding to the different notes of the musical
game.

Importantly, HSL offers the possibility to code a color
using a precise note with only the H color channel (hue) and
linearly (more precisely radially around the circle of the cone)
with a semantic (well-understood) expression (i.e., 0-Red, 60-
Yellow, 120-Green, 180-Cyan, 240-Blue, 300-Magenta, 360-
Red) (see Fig. 2). Additionaly, in this color space, colors with
the same hue can then be distinguished semantically with
adjectives referring to their saturation and lightness, just as
our sonification system will be able to do but with different
sound characteristics (such as octave and harmonics), as will
be explained later.

More precisely, in our application, the hue information of
each region is first modeled by a normalized re-quantized
histogram with seven (one for each note) equal-width bin
(in the hue interval) as a hue feature vector. In this simpler
model, the texture of each pre-segmented region is herein
characterized by a mixture of hues, or more precisely, by
the values of the re-quantized hue histogram. This model is
simple, quick to compute, and allows significant data reduction
while being robust to noise and local image transformations.

Once the seven-bin histogram is computed, each of these
seven re-quantized histogram values is converted into an
impulse (or Dirac delta) function weighted by the corre-
sponding value of the re-quantized histogram (see Fig. 2)
in the frequency domain. More precisely, the first, second,
. . ., seventh values of the histogram are converted to an
impulse function centered on the frequency corresponding to
the different notes of the musical game,i.e., 262Hz (Do),
294Hz (Re), 330Hz (Mi), 349Hz (Fa), 392Hz (Sol), 440Hz
(La), and494Hz (Si), respectively (represented by the white
keys of a piano keyboard for the octaveC4 Middle C [34]), in
a manner such that in the temporal domain, the mixture of hue
of each region will be translated by a mixture of pure tones
or musical notes (easily identifiable by a visually impaired
person) played together in a manner that sounds harmonious
and determining the the so-calledpitchof the generated sound.

2) Luminance Translation:Since this concept is dependent
on the amount of energy that is being radiated (cf. Section
II-A3), we thus bring this concept closer to the different
octaves of vibration of a piano. To this end, the luminance
value, initially in the interval[0− 255] is divided into8 equal
intervals, and each interval is assigned the name of an octave
scaleCn [34], in which is played the musical notes defined

in Subsection II-C1 with:

Cn =

⌈

lR
32

⌉

(1)

where lR is the mean luminance value of the region and⌈.⌉
the ceil function. For example, iflR = 100, it implies the
octaveC4 with the standard so-calledMiddle C octave[34]
comprised within the range[Do = 262Hz− Si = 494Hz]. If
lR = 180, it implies the octaveC6 with the so-calledSoprano
C octaveusing the range[Do = 1046Hz− Si = 1976Hz].

3) Saturation Translation:Since this concept describes the
purity of the color (high-saturation colors look rich whereas
full- and low- saturation colors look dull and grayish; see Fig.
1), we translate this concept in audio space by adding to the
sound previously generated more (for low-saturation colors)
or fewer (for high-saturation colors) harmonics, thus making
the sound more or less pure. More precisely, the saturation
value, initially in the interval[0−255], is divided into8 equal
intervals, andNs is computed as follows:

Ns = 7−

⌊

sR
32

⌋

(2)

wheresR is the mean saturation value of the region and⌊.⌋
the floor function.Ns represents the number of octaves; in
addition to the one in that is playing the sound previously
generated (see Subsection II-C2), we duplicate this mixture
of notes on several other (closest) octaves. For example, if
sR > 224 implying Ns = 0, the pure sound created on only
one octave is generated. IfsR = 100 implying Ns = 4; 4
supplementary octaves (the closest to that estimated in Sub-
section II-C2) are added to the initial sound with a weighting
amplitude of1/Ns (i.e., 1/4 for our example (see also the
example given in Fig. 3), making the generated sound less
pure.

262Hz

DODO

522Hz130Hz

Duplication on two octaves with amplitude 1/Ns
Mean Saturation > Ns=2

DO

Octave COctave C3 5 (tenor)

262Hz

RE

DO MI FA

SOL

LA SI

f

f

s( )f

s( )f

0

0

Fig. 3. Saturation Translation: In addition to the mixture of musical notes
generated by the hue value (see Fig. 2), we duplicate it on several other
(closest) octaves according to the saturation value. For example, ifsR = 170

implying Ns=2 (see Eq. (2)), we duplicate this mixture on the two closest
octaves ofC4 (with a weighting of 0.5).

4) Roughness Texture Translation:In order to aid the user’s
understanding of the possible roughness (due to the presence
of gradients) of a textured region to be sonified, we can
alter the purity of the sound signal, thanks to the concept of
distortion. This can produce avibrant, rhythmic, growling, or
gritty tone depending on the type of distortion used. This effect
can efficiently (and intuitively) model the grade and style of
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roughness of each pre-detected region.
More precisely, we can consider two different types of rough-
ness properties of a region that can be quantified by two
statistical features. The first one is the mean of the module of
the first-order gradient within the region (defining the global
roughness of the region), and the second is the variance of the
orientation (following the four main directions) of the (first-
order) gradient module (hence quantifying the presence of
man-made geometric structure, such as a manufactured object
or an un-natural texture).

• In our application, the first type is created by magnitude
distortion by adding (noisy) randomized harmonics. This can
be simply done by adding, to the frequency bins with null
amplitude, randomized values within the interval[0 , ρ] with
ρ proportional to the mean of the module of the first-order
gradient within the region.

• The second type can be created by phase distortion by
adding (noisy) randomized value[−β , β] to the phase
spectrum, withβ proportional to the variance of the oriented
(in the four directions) module of the first-order gradient
within the region.

5) Translation Into Temporal Space:Once the hue, satu-
ration and luminance and the mean gradient module of each
region have been mapped in the frequency domain and ex-
pressed in in terms of the magnitude spectrum vector1 and the
variance of the oriented gradient in the phase spectrum vector
(thus defining the audio signal’s spectral envelope (which is
related to the perception oftimbre), after Hermitian symmetry
is imposed on the magnitude and on the phase spectrum, we
return to the time domain, with a simple inverse fast Fourier
transform (FFT), to gets(t).

6) Histogram Gradient Translation:In Section II-C4, we
have sonified,via the distortion effect of the audio signal, the
mean and the orientation variance of the gradient magnitude
as two different features related to the gradient-based region
activity. Another important visual cue that remains to be
expressed by sonification is the histogram or distribution of
the amplitude of the gradient module. A way to express this
visual cue and to give it a meaningful, interesting audio effect
is through the notions of rhythm and loudness of the sonified
sound. To this end, and in order to sonify this information to
the user, such that it is easily decodable, we use the following
strategy: we first compute a re-quantized histogram using ten
equal-width bins of the first-order gradient module and use
this histogram followed by its mirror projection to weight the
1-second temporal envelope of the audio signals(t) (see Fig.
4).

More precisely, in our application, we keep a percentagep
of the original signal (characterizing and encoding the image
low-level visual features listed in previous points 1 to 5),and
the weighting is applied for the other100%− p of the signal.
This allows us to avoid generating signals of total silence,as

1Algorithmically, since∆f = 1Hz, in our application (with a sampling
frequency offe=16384 and16384 sound samples; see Section II-B), it boils
down to filling a 1D vector of length16384 by simply putting an amplitude
value in the n-th cell for the frequency nHz.

Audio signal before histogram gradient translation

weighted by:

Audio signal after histogram gradient translation

gives:

Fig. 4. The histogram or distribution of the amplitude of thegradient module
within the considered region (to be sonified) is used to weight the temporal
envelope of the audio signal.

in the example of the region given in Fig. 4. See Algorithm 1
for implementation details.

III. E XPERIMENTAL RESULTS

In our experiments, we have tested our sonification
algorithm on some images from the Berkeley segmentation
database (BSD300) [35]. This image-base has both a great
variability of naturally colored and textured images and
a good (manually hand-segmented) segmentation for each
image. This allows us to objectively analyze, discuss and
highlight the pros and cons of just our sonification process.
Nevertheless, in the absence of a segmentation map for
each image, we can use any automatic segmentation model
and especially the one proposed in [27] which obtains a
segmentation score, in terms of the Rand Index equals to
0.81, meaning that on average,81% of pairs of pixel labels
are correctly classified compared to the segmentation maps
of the BSD300, considered as ground-truths.

In our tests, we setρ and β (Section II-C4), 5 times the
mean of the module of the first order gradient and 5 times
the variance of the oriented module of the first-order gradient,
respectively. A high value ofp (Section II-C6) reduces the
effect of the gradient interpretation on the signal envelop,
while a small one increases the risk of signal with silence.
We then usedp = 10% as a good trade off. Note that those
values are empirical.

A. Discussion

When we position the pointer (controlled by the mouse
or the keyboard) in the middle bottom and left border of
the image shown in Fig. 5.a, we can easily recognize and
thus localize two regions associated with a pure tone sound
(lasting one second, and repeating itself in a loop) with a
specific frequency corresponding to the musical noteDo for
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Fig. 5. (a): Image number198023 from the BSD300 Berkeley database [35] (left) and its segmentation (right)with the spectrogram of the generated sound
when the user examines the image from left to right starting from line 320 and from top to bottom starting from column110. The frequency resolution of
the spectrogram is∆f = 20Hz, and the spectrogram ranges from0Hz to 2 kHz (horizontally for the left one and vertically for the topone); the data are
represented with the thermal (false-) color scale shown on the far left. (b): Some audio samples generated at different locations of theimage.

the red part of the wool turtleneck sweater of the woman
and the specific noteLa for its two blue parts (at the left
arm and neck) (see Section II-C1). We can easily also guess
the homogeneous black part of the sweater since the emitted
sonified sound mainly vibrates at the bass tones (see Sect.
II-C2 (low frequencies), but with several other harmonics
(with smaller amplitudes) (cf. Sect. II-C3), indicating the
presence of a very low luminance and very saturated colors
such as black. Let us note that this part can be distinguished
from the background that is dark since the latter region is
a uniform dark region without gradient (unlike the sweater
region), and thus the temporal envelope of the sonified sound
is different (see Fig. 5.b). We can also easily localize the blond
hair of this person since the sonified sound is also a pure
tone corresponding to theRe musical note, but with a slight
magnitude distortion effect due to the presence of a mean
gradient in this particular region (cf. Sect. II-C4) and thus
sonifying the particular textural roughness of this regionand
also distinguishing the hair region from the facial area. Indeed,
the lightness of this part is more important, the saturationis
lower, and the distribution of the gradient is radically different
(see Fig. 5.b), thus generating a very different temporal enve-
lope for the sonified signal. We can easily draw the outline of
the person without ambiguity. Finally, the background, whose
area looks like a sort of fence, is associated with a sound
that is a very complex sound (highly saturated) with a lot of
(amplitude and phase) saturation (cf. Sect. II-C4) and witha
very peculiar temporal envelope, creating a kind of scratchy
noisy sound that grumbles regularly every half second and thus
representing appropriately the regular grilling.

Fig. 6 shows four images from the BSD300 Berkeley
database with some audio samples generated at different
locations of these images. Figures (a) and (d) share the same
semantic concepts as do (b) and (c). We can notice that the
audio results generated at the sky of the second and third
images are very similar and very characteristic. Similarly, the
sonified sound generated for the modern building in the second

(a) (b) (c) (d)
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Fig. 6. Images number(a) 12003, (b) 86000, (c) 277095 and (d) 134052

from the BSD300 Berkeley database [35] with some audio samples generated
at different locations of these images.

and third images are very similar (despite a slightly different
texture, demonstrating that our proposed sonification system
generalizes well across regions from the same semantic con-
cept or label) and also characteristic of a man-made structure
with geometric and regular patterns. The sound emitted by
the by the starfish or its background is very rich and complex
with amplitude and phase distortion characteristic of complex
textures. Nevertheless, we can hear easily in them the musical
notes Do-Re for the starfish and Mi-Fa for the background in
relation to their respective hue.
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B. Validation

To validate the sonification model, we obtained a certificate
of ethics from the Université de Montréal and performed a
pilot study (easily reproducible, from the BSD300, to facilitate
eventual further comparisons with future methods) with 14
volunteers (students and nonstudents). Note that each test
lasted approximatively 1h, and each participant was involved
in a minimum of two tests. This puts constraints on a person´ s
availability and capacity to stay motivated along all the tests
and reduced the number of different participants and the
number of test samples. Due to some constraints, we were
unable, unfortunately to include blind persons in the study.
However, we believe that if sighted people are able to perform
well on our system, blind people will do better since they
demonstrate better ability with sounds [32], [33]. In all the
experiments we masked the images to the user with a black
screen.

The study consisted of multiple experiments: mapping prop-
erties recognition, scene description, form detection, image
categorization and a longitudinal study. In the experiments
all subjects explored the very same images but with different
orderings to avoid presentation order effects. Only one of the
subjects had amusical ear, and none of them had a training
session beforehand.

1) Experiment I (Mapping Properties’ Recognition):A
calibration image (Fig. 7) containing five rows (pitch, octave,
purity, distortion and loudness) was presented to the subject
in order to train him with the system. For each row, the model
related property was activated, and the subject scanned the
row horizontally in order to learn the behavior of the sound
based on the property. The learning session of the selected
property lasted approximatively 5mn. Immediately after this
session, the user was tested on the selected property using
a dozen square images, masked by a black screen, from the
calibration (Fig. 7) and mosaic (Fig. 8) images.

After all the properties had been separately tested, we
activated all the properties in order to test the effects of
the combination. The user was presented each square of the
mosaic (Fig. 8) for identification.
Five volunteers participated in the experiment, and the results
of the testing are reported in Table I.

Property Question Single All

Pitch What is the color of the square ? 62% 51%

Octave Is the square dark or light ? 96% 75%

Purity Is the square pure or dirty ? 83% 66%

Texture Does the square have a texture ? 92.0% 72%

Loudness Is the image contrasted ? 90% 69%

TABLE I
RESULTS OF EXPERIMENTI

As we can observe, the detection of the colors using
the pitch, was difficult for the participants while detecting
other properties was easy. This is explained by the fact that
distinguishing between low and high frequencies or the level of
the volume is easier than detecting 7 musical notes. With more

Fig. 7. Experiment I: Calibration and training image

Fig. 8. Experiment I: Mosaic of testing images

training time and practice, a better result could be achieved as
we will demonstrate in Section III-B5.
We observed that combining all the properties slightly affected
the precision of each property, especially, for a nonmusical
ear. For example, a low-saturation image, introduces higher
octaves (via the added harmonics), which makes the image
sounds more acute, as does having a higher luminosity. Thus,
it is sometimes difficult to identify whether the acuity of the
generated sound is due to the luminosity or saturation of the
source image (i.e., the pitch of the musical note or the presence
of harmonics). We also observed that for a nonmusical ear, it
is difficult to detect the color (or the pitch) when the sound is
mainly composed of very low or very high frequencies.

2) Experiment II (Scene Description):In experiment II,
three participants from experiment I were given 5 minutes
to explore the images shown in Fig. 6, without further infor-
mation. These images were selected to check whether their
description fits the interpretation we performed in Section
III-A. At the end of the exploration of each image, the
participants had to provide an oral description of the scene
as they imagined it. A qualitative evaluation is reported in
Table II. We can notice that the subjects were able to easily
recognize the shapes of the objects, but failed sometimes to
recognize the color when the object was highly textured or
too dark.

3) Experiment III (Form Detection):During this experi-
ment, eleven subjects had a training of 5 min with the mosaic
image (Fig 8). Only two of them were also involved in
experiments I and II. We selected from the database four
images (Fig. 9) that contained different objects in terms of
shape and number. The participants were given 5 min to
explore each image. They had to then say, based on their
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Image Subject Description

(a)

1 A yellow textured object with spikes on a dark

background. Could be a flower or a homehouse.

2 A bright textured form with spikes on a dark back-

ground. No idea of what it could be.
3 A very textured clear form in the shape of a star on

a green background. Green sky? No idea of what it

could be.

(b)
1 A vertical pointed shape with a light red texture on

the top and a dark one somewhere on the bottom. A

blue background on the top. Could be a pyramid or

a head with a pointed hat.

2 A vertical textured shape with a blue colored back-
ground on top. Could be a bust of a man.

3 A light red texture in the shape of a bottle. A clear

background with no texture on the top. Could be a

bottle or a flower.

(c)
1 A centered vertical shape textured in red. A clear

blue background on the top. Could be a trunk.

2 A standing elongated red form, very textured. Could

be a tree trunk.
3 A vertical dark textured shape. A clear background

with no texture on the sides and top. No idea of what

it could be.

(d)

1 A horizontal red textured shape on a green dark

background. No idea...a landscape?
2 A horizontal bright textured shape centered on a

green dark background. Could be a bird in the

countryside.

3 A light textured shape centered on a dark back-
ground. Could be a homehouse.

TABLE II
RESULTS OF EXPERIMENTII

exploration, if the image contained a long ostrich’s neck ina
plain, three vertical sculptures in a garden, a vase laid against a
wall or six umbrellas on a terrace. The goal of this experiment
was to check if the information about the regions and edge
detection was properly conveyed in the model.

(a) (b) (c) (d)

Fig. 9. Experiment III: Image numbers(a) 66075 (a long ostrich’s neck in
a plain), (b) 101085 (three vertical sculptures in a garden),(c) 227092 (a
vase laid against a wall) and(d) 242078 (six umbrellas on a terrace) from
the BSD300 Berkeley database [35].

The confusion matrix for the results of test III is shown
in Table III. Most of the subjects were able to associate the
images to the correct content. The greatest confusion was for
the vase and the ostrich’s neck, since both have a similar
vertical shape in the subject’s imagination. The content that
was easily identified was the three vertical sculptures in a
garden (image (b)).

4) Experiment IV (Image Categorization):During this
experiment, three pairs of images (Fig. 10) that look similar
were presented (5 min per image) to the eleven participants

(a) (b) (c) (d)

(a) 0.55 0.27 0.18

(b) 0.91 0.09

(c) 0.36 0.64

(d) 0.09 0.09 0.09 0.73

TABLE III
CONFUSION MATRIX OF EXPERIMENTII

from the previous experiment. They had to group them into
pairs based on their global similarity in terms of the sounds
heard. This third test permitted validating the mapping of the
whole hierarchical visual features (regions, edge, colorsand
texture) into sounds.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Experiment IV: Image numbers(a) 41069, (b) 42044, (c) 61060,
(d) 304074, (e) 42078 and (f) 176039 from the BSD300 Berkeley database
[35] grouped vertically by visual similarity.

(a) (b) (c) (d) (e) (f)

(a) X 0.09 0.73 0.09 0.09

(b) X 0.09 0.73 0.18

(c) X 0.09 0.18 0.64

(d) X 0.09

(e) X

(f) X

TABLE IV
ASSOCIATIONMATRIX OF EXPERIMENT IV

This test was more difficult than the previous one because
it required the subjects to memorize many tones per image (3
on average). The association between the two images was not
straightforward since several tones characterize an image, and
the challenge was to use the dominant tones as a reference.
The results presented in Table IV indicated that some people
associated a bright image with a dark one because they heard
one low-frequency sound in some part of the first one. Others
associated a blue tinted image with a red one because both
contain high-pitch sounds, and it is not easy to distinguish
musical notes at such high frequencies. However, the majority
of people grouped together the red tinted (a) and (d) images
(high-pitched Do sound), the dark (b) and (e) images (very
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saturated low-frequency sound), and the blue-dominant (c)and
(f) images (high-pitched La sound).

5) Longitudinal Study:Two participants who were involved
in all four previous experiments were allowed to use the
system for a long time in order to observe their progression
and learning curve. After they had used the system for two
or three additional hours, they were able to easily distinguish
the colors using the pitch. They improved their result on the
combination testing (Section III-B1) by an average of20%.
They appreciated the research in the following terms:
Participant 1:I improved myself by taking the calibration test
multiple times. I liked the mosaic testing, but it was with
the scene description experiment that I better understood the
usefulness of the research. This could be helpful for visually
impaired people.
Participant 2:I especially liked the scene exploration tasks
(Experiments II to IV). It made me more imaginative and
helped me see the utility of the project.

IV. CONCLUSION

In this paper, we have presented a new image sonification
system that provides an intuitive mode of obtaining visual local
spatial information and some context information about an
image for visually impaired persons. The proposed system uses
a set of hierarchical visual features about the image content
at different levels of abstraction and perceptually meaningful
mappings based on the additive synthesis technique, in the
spectral domain; it uses the concepts of timbre, loudness, pitch,
rhythm and different distortion effects to translate the appear-
ance of each individual pre-segmented region of the image into
the audio domain. The proposed system allows us to easily
localize different regions and classify regions into man-made
and natural regions, sometimes with automated man-made
object recognition. This system can be complementary to high-
level image sonification (i.e., an automatic verbal translation
model), which is prone to errors and with which the listener
can also miss all the richness, subtleties and complexitiesof
the underlying visual information.

The validation results showed that although the subjects did
not have amusical earand did not have any training session,
in some cases, they were able to detect objects in the images
and group images based on the visual features translated into
sounds. This also showed that users were able to improve their
performance on the system with more practice. These results
are promising since people with visual impairments (musical
ears) and some training sessions will surely be able to do
better.
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Variables

Rmax Maximum number of regions
NHue Bin number of the hue
NGrad Bin Number of the gradient
NSamp Number of samples 16384
R[][] Regions of Segmented Image
y Current Region label
yOld Old Region Label
Posx, P osy Cursor Position
HR[][] Mixture of Hue of size Rmax ∗NHue

GR[][] Mixture of Gradient of size Rmax ∗NGrad
SR[] Saturation table of length Rmax

LR[] Luminance table of length Rmax

GMR[] Gradient Mean table of length Rmax

OGR[] Oriented gradient table of length Rmax

NFreq[] Notes Frequencies of Octave C4 of length 7
MFreq[], PFreq[] Sound samples of length NSamp

Initialization
Load Image and Convert to HSL
Compute or Load Image Segmentation to R
for each region r < Rmax do

• HR[r]← ComputeHueHistogram()
• GR[r]← ComputeGradientHistogram()
• SR[r]← ComputeSaturation()
• LR[r]← ComputeLuminance()
• GMR[r]← ComputeGradientMean()
• OGR[r]← ComputeOrientedGradient()

end

Wait For Event
while user input and not exit do

Posx, P osy ← GetCursorPosition()
y ← R[Posx][Posy ]
if y <> yOld then

GenerateSound()
for i < NHue do

1. Translate hue and luminance
Cn ← ⌈

LR [y]
32
⌉

MFreq⌊NFreq[i] ∗ 2
Cn−4⌋ ← HR[y][i]

2. Translate saturation
Ns ← 7− ⌊SR[y]

32
⌋

for l < Ns do
MFreq⌊NFreq [i] ∗ 2

Neighbors(Cn,l)−4⌋ ←
HR[y][i]/Ns

end
end
for k < NSamp/2 do

3. Magnitude Distortion
if MFreq [k] = 0 then

α = 5 ∗ rand() ∗GMR[y]
MFreq[k]← α/NSamp

end
4. Phase Distortion
β = 5 ∗ rand() ∗OGR[y] PFreq[k]← β/NSamp

end
HermitianSymmetry(MFreq, PFreq)
Sound← IFFT (MFreq, PFreq)
5. Translate Gradient Histogram
Sound←Weight(Sound,GR)
P laySound()
yOld ← y

else
PlaySoundIfNotPlaying()

end
end

Algorithm 1 : Image Sonification


