Systèmes de nombres

Rappel

Dans un système en base X, il faut X symboles différents pour représenter les chiffres

de 0 à X-1

Base 2: 0, 1

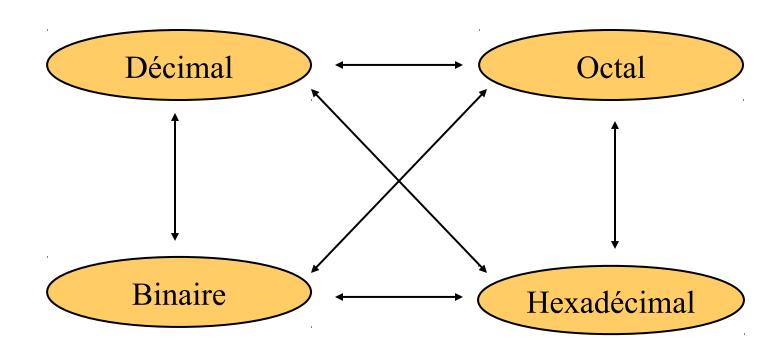
Base 5: 0, 1, 2, 3, 4

Base 8: 0, 1, 2, 3, 4, 5, 6, 7

Base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Base 16: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Systèmes de nombres


Système	Base	Symboles
Décimal	10	0, 1, 9
Binaire	2	0, 1
Octal	8	0, 1, 7
Hexadécimal	16	0, 1, 9, A, B, F

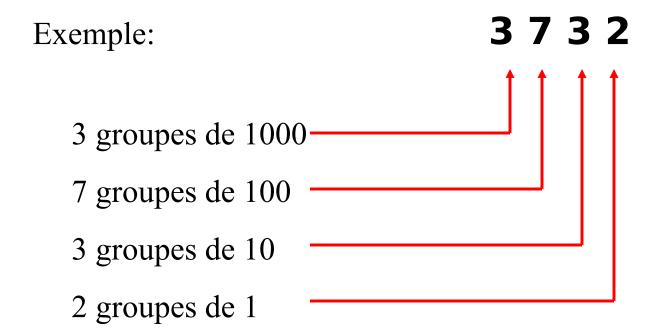
Quantité/Comptage

Décimal	Binaire	Octal	Hexadécimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Conversion d'une base à une autre

• Exemples:

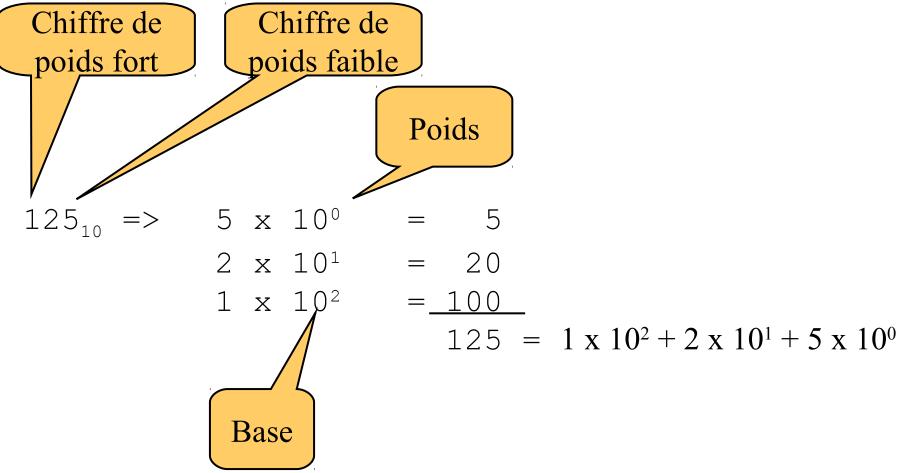
$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

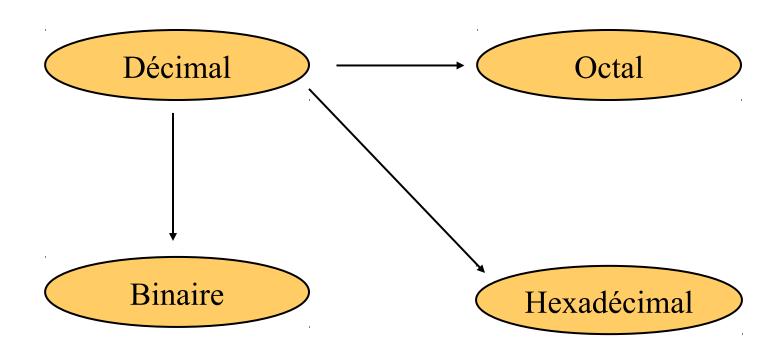

Rappel, système décimal

Le nombre 125 signifie:

```
1 groupe de 100 (100 = 10^2)
```

- 2 groupes de 10 $(10 = 10^1)$
- 5 groupes de 1 $(1 = 10^0)$


Placer les valeurs Système décimal


/KC

Représentation d'un nombre N en base X

Représentation d'un nombre N en base $X : N_x = \sum d_i X^i$

• Exemples:

- Conversion d'un nombre entier
 - Méthode des divisions successives

 Méthode des soustractions successives

- Conversion d'un nombre entier
 - Méthode des divisions successives
 - N est itérativement divisé par X jusqu'à obtenir un quotient égal à 0
 - La conversion du nombre N dans la base X est obtenue en notant les restes de chacune des divisions effectuées depuis la dernière division jusqu'à la première

- Conversion d'un nombre entier
 - Méthode des divisions successives

$$125_{10} = ?_{2}$$

$$1 62 2$$

$$0 31 2$$

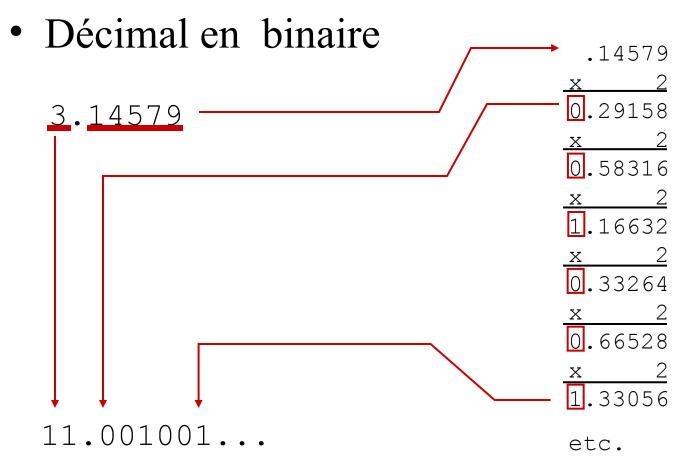
$$1 7 2$$

$$1 7 2$$

$$1 1 1 2$$

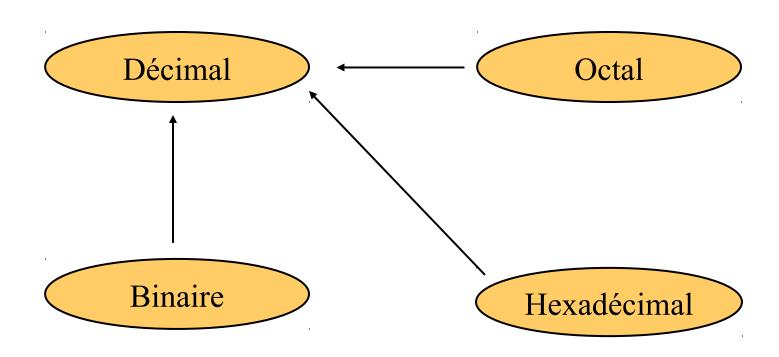
$$1 1 2$$

$$1 0$$


- Conversion d'un nombre entier
 - Méthode des soustractions successives
 - La plus grande puissance de X qui est inférieure ou égale à N est soustraite à N.
 - Répéter jusqu'à obtenir un résultat égale à 0
 - Le nombre N exprimé en base X est obtenu en notant le nombre de fois où une même puissance de X a été retirée et ce pour chaque puissance depuis la plus grande apparaissant dans l'ordre décroissant des puissances.

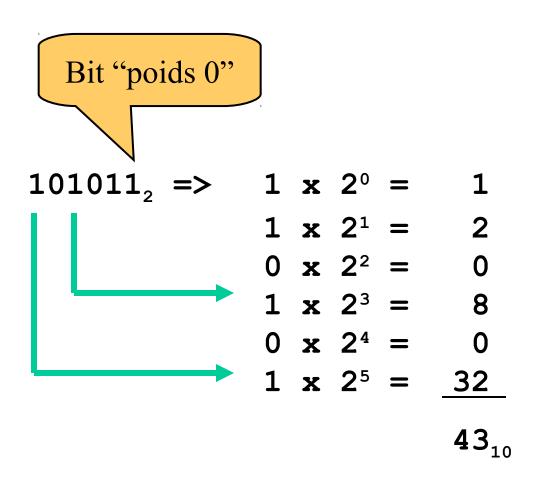
- Conversion d'un nombre entier
 - Méthode des soustractions successives

$$235_{10} = ?_{8}$$
 $8^{0} = 1;$ $8^{1} = 8;$ $8^{2} = 64;$ $8^{3} = 512$
 $235 - 64 = 171;$ $171 - 64 = 107;$ $107 - 64 = 43;$ $\Rightarrow 3 \times 64$
 $43 - 8 = 35;$ $35 - 8 = 27;$ $27 - 8 = 19;$ $19 - 8 = 11;$ $11 - 8 = 3 \Rightarrow 5 \times 8$
 $3 - 1 = 2;$ $2 - 1 = 1;$ $1 - 1 = 0;$ $\Rightarrow 3 \times 1$
 $235_{10} = 3 \times 64 + 5 \times 8 + 3 \times 1 = 353_{8}$


- Conversion d'un nombre fractionnaire
 - Nombre N est fractionnaire
 - Sa partie entière vers une base X
 - Méthode des division successives
 - Méthode des soustractions
 - Partie fractionnaire
 - Multiplier cette partie fractionnaire par la base X
 - La multiplication est itérée sur la partie fractionnaire du résultat obtenu
 - Prendre des parties entières de chacun des résultats des multiplications effectuées

Conversion d'un nombre fractionnaire

Le développement s'arrête lorsque la précision voulue est obtenue


• Exemples:

Technique

- Multiplier chaque digit par la base Xⁿ, où n est le "poids" de ce digit
- Additionner les résultats

$$N_x = d_n \dots d_0 = d_n \times X^n + d_{n-1} \times X^{n-1} + \dots + d_0 \times X^0$$

• Décimal (rappel)

$$3.14 \Rightarrow 4 \times 10^{-2} = 0.04$$
 $1 \times 10^{-1} = 0.1$
 $3 \times 10^{0} = 3$
 3.14

• Binaire vers décimal

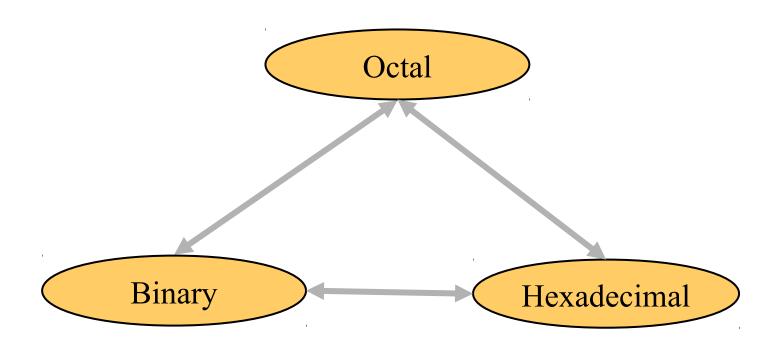
```
10.1011 => 1 x 2^{-4} = 0.0625

1 x 2^{-3} = 0.125

0 x 2^{-2} = 0.0

1 x 2^{-1} = 0.5

0 x 2^{0} = 0.0

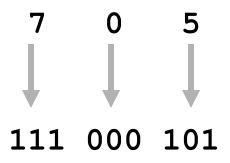

1 x 2^{1} = 2.0

2.6875
```

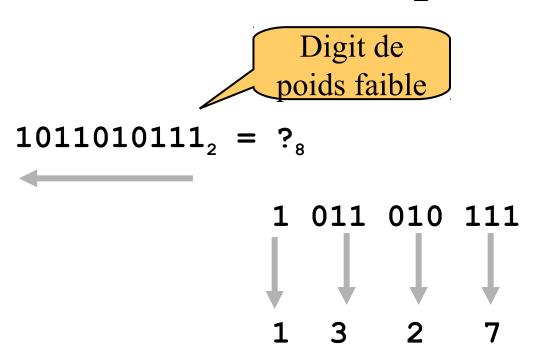
Conversion du nombre N exprimé dans la base 8, 16 vers la base 2 (et vice versa)

- Toutes les informations sont représentées dans un ordinateur sous forme d'une chaîne binaire
 - − Base de représentation − base 2
 - Chaînes binaires ne sont pas aisément manipulables par l'esprit humain
 - Deux autres bases sont très souvent utilisées
 - La base 8 (système octal)
 - La base 16 (système hexadécimal)

Conversion du nombre N exprimé dans la base 8, 16 vers la base 2 (et vice versa)



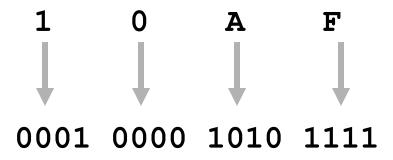
Conversion du nombre N exprimé dans la base 8 vers la base 2 et vice versa


• Technique

- Convertir un nombre N exprimé en base 8 vers la base 2 s'effectue en remplaçant chacun des chiffres du nombre par leur équivalent binaire sur 3 bits
- Convertir un nombre N exprimé en base 2 vers la base 8 s'effectue en découpant la chaîne binaire N en paquet de 3 bits depuis le bit de poids faible jusqu'au bit de poids fort pour la partie entière

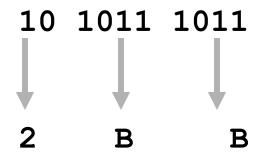
$$705_8 = ?_2$$

$$705_8 = 111000101_2$$



$$1011010111_2 = 1327_8$$

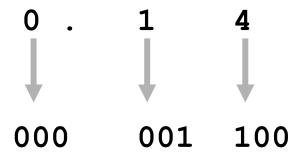
Conversion du nombre N exprimé dans la base 16 vers la base 2 et vice versa


- Technique
 - Convertir un nombre N exprimé en base 16
 vers la base 2 s'effectue en remplaçant chacun des chiffres du nombre par leur équivalent binaire sur 4 bits
 - Convertir un nombre N exprimé en base 2 vers la base 16 s'effectue en découpant la chaîne binaire N en paquet de 4 bits depuis le bit de poids faible jusqu'au bit de poids fort pour la partie entière

$$10AF_{16} = ?_{2}$$

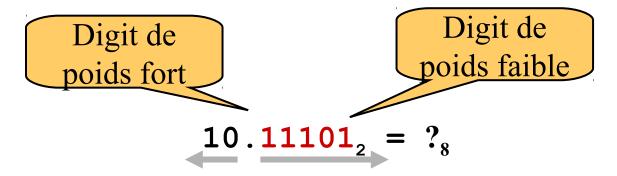
$$10AF_{16} = 0001000010101111_{2}$$

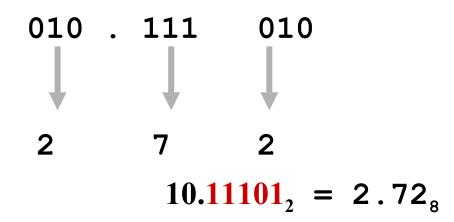
$$1010111011_2 = ?_{16}$$

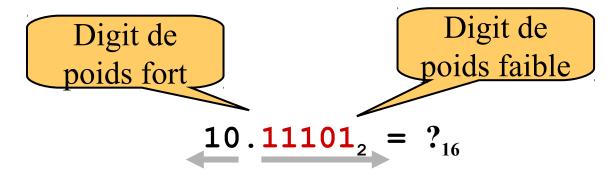

$$1010111011_2 = 2BB_{16}$$

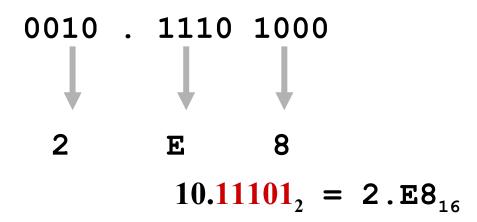
Technique

- Convertir un nombre N exprimé en base 8 (16)
 vers la base 2 s'effectue en remplaçant chacun des chiffres du nombre par leur équivalent binaire sur 3 (4) bits
- Convertir un nombre N exprimé en base 2 vers la base 8 (16) s'effectue en découpant la chaîne binaire N en paquet de 3 (4) bits depuis le bit de poids fort jusqu'au bit de poids faible pour la partie fractionnaire

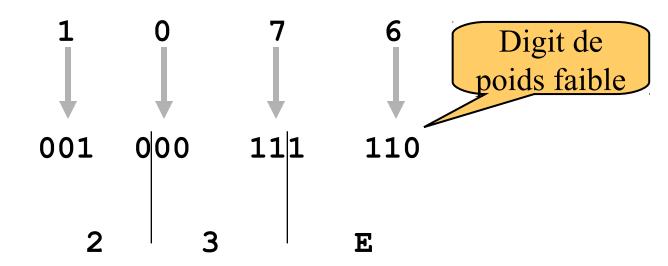

Octal vers binaire


$$0.14_8 = ?_2$$

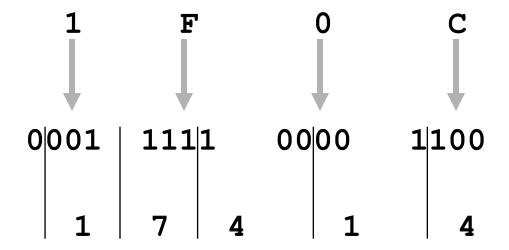

$$0.14_8 = 0.001100_2$$


• Binaire vers octal

Binaire vers hexadécimal



Conversion du nombre N exprimé dans la base 8 vers la base 16 et vice versa


- Technique
 - Utiliser système binaire comme un système intermédiaire

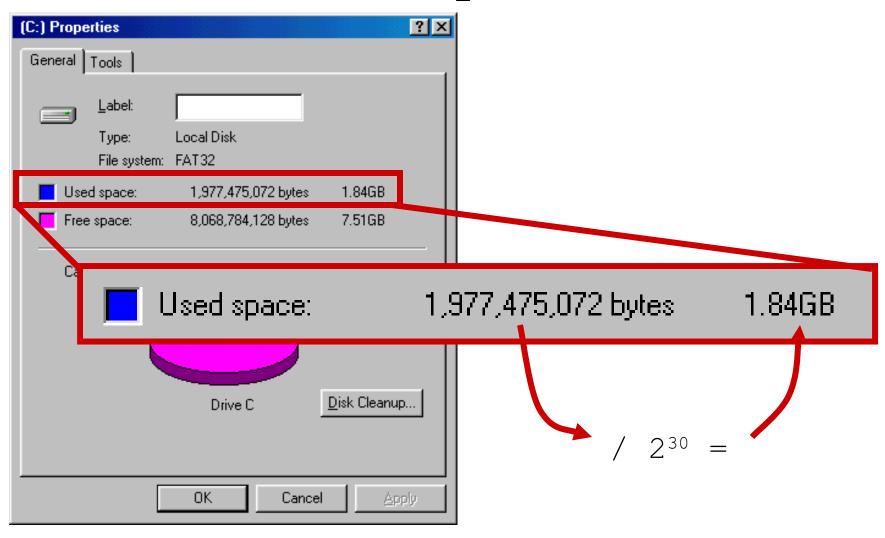
$$1076_8 = ?_{16}$$

$$1076_8 = 23E_{16}$$

$$1F0C_{16} = ?_{8}$$

$$1F0C_{16} = 17414_{8}$$

Mesure de la quantité d'information


• Base 10

Puissance	Nom	Symbole	Valeur
10-12	pico	p	.000000000001
10-9	nano	n	.00000001
10-6	micro	μ	.000001
10-3	milli	m	.001
10^3	kilo	k	1000
10^{6}	mega	M	1000000
10^{9}	giga	G	1000000000
10^{12}	tera	T	1000000000000

Mesure de la quantité d'information

• Base 2

Puissance	Nom	Symbole	Valeur
2^{10}	kilo	k	1024
2^{20}	mega	M	1048576
2^{30}	Giga	G	1073741824

Addition binaire

• Deux valeurs de 1 bit

A	В	A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	10	
			"deux"

Addition binaire

- 2 valeurs de *n*-bits
 - Additionner les bits dans chaque position
 - Propager les retenues

Multiplication

• Décimal (rappel)

```
35

x 105

175

000

35

3675
```

Multiplication

• 2 valeurs de 1-bit

A	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Multiplication

- 2 valeurs de *n*-bits
- Comme les valeurs décimales

```
1110

x 1011

1110

1110

0000

1110

10011010
```