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Abstract
Algebraic data types and inductive types like those of the
Calculus of Inductive Constructions (CIC) are the bread and
butter of statically typed functional programming languages.
They conveniently combine in a single package product
types, sum types, recursive types, and indexed types. But
this also makes them somewhat heavyweight: for example,
tuples have to be defined as “degenerate” single constructor
inductive types, and extraction of a single field becomes a
laborious full case-analysis on the object. We consider this
to be unsatisfactory. In this article, we develop an alterna-
tive presentation of CIC’s inductive types where the various
elements are provided separately, such that inductive types
are built on top of tuples and sums rather than the other
way around. The resulting language is lower-level yet we
show it can be translated to to a predicative version of the
Calculus of Inductive Constructions in a type-preserving
way. An additional benefit is that it can conveniently give a
precise type to the default branch of case statements.

CCS Concepts • Software and its engineering→ Func-
tional languages; Control structures; Syntax; • Theory of
computation → Type theory.

Keywords Inductive types, compilation, union types, case
analysis
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1 Introduction
Typer [Monnier 2019] is a functional language based on a
dependently typed calculus, in the tradition of Coq [Huet
et al. 2000] and Agda [Norell 2007], but focusing on programs
more than proofs, like Idris [Brady 2013], F-star [Swamy et al.
2016], Zombie [Casinghino et al. 2014], and many others. Its
design follows that of Scheme, in the sense that it intends to
provide a minimalist core language on top of which a nice
surface language can be built by metaprogramming.

So a focus of Typer’s design is on providing a good core lan-
guage which is the target of the metaprogramming facilities.
Some of the design goals of this language are:

1. Usable to write both proofs and programs.

2. An economy of concepts, in other words a simple lan-
guage with orthogonal features. We want this both for
aesthetic and pragmatic reasons.

3. High-level enough to be convenient to build on top of it.

4. Low-level enough so the language itself does not impose
unneeded inefficiencies which the compiler then needs
to eliminate.

5. A reasonably efficient implementation shouldn’t require
excessive efforts.

A language like the Calculus of Constructions (CoC) satisfies
the first two points above, but falls short on the efficiency side
when it comes to representing data structures. The Calcu-
lus of Inductive Constructions (CIC) [Paulin-Mohring 1993]
solves most of those issues, especially in the form presented
by Giménez [1994]. It is nicely minimalist, its inductive defi-
nitions providing at once sums types, tuples types, recursive
types, etc... For these reasons Typer’s core language derives
directly from the CIC.

Yet, early experience with it made us feel that it was still a bit
too high-level, introducing inefficiencies in some places. For
example, it makes it impossible to separate the extraction
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of the head and tail of a list from the test that the list is
non-empty.

Another annoyance appears in code that wants tomanipulate
tuples: while defining tuples as single-constructor datatypes
is not problematic in terms of type definition or tuple con-
struction, it becomes constraining when extracting data out
of those tuples: every access takes the form of a case state-
ment with a single branch that extracts each and every field
of the tuple even if only a single one of those fields is needed.
So a simple field selection becomes an operation of size pro-
portional to the tuple’s size, and like all case statements it
requires a potentially complex type annotation.

Of course, most compilers for languages with inductive types
or algebraic datatypes typically solve those performance is-
sues by applying corresponding optimizations in the later
phases of the compiler where the internal representation is
not typed any more, but that goes against our design goal
number 4: we want the programmer (and the metaprogram-
ming code) to be able to apply those optimizations by hand
without being hindered by the type system.

In the rest of this paper, we hence present the design of
the Calculus of United Constructions (CUC) where sums,
recursive types, tuples, and indexed types are provided as
separate elements, which together can be used to define our
beloved inductive types but can also be used separately. The
main new primitive is the introduction of a switch construct,
which only looks at an object’s tag to transfer control to
the appropriate branch but doesn’t extract any further data,
reflecting instead into the type context the knowledge about
which tag was found. An important feature of this switch
construct is that it fully supports default branches, also re-
flecting into the type context the fact that some branches
were considered but not taken.

While we work within the context of a dependently typed
language that can be used as a higher-order logic, the tech-
nique we present is applicable to any other language using
algebraic datatypes.

This said, when used as a logic, we would want our CUC
language to enjoy the same consistency guarantee as the CIC,
so we compare the two in Section 5 by giving a translation
of CUC terms to CIC.

The contributions of this article are:

• The CUC language, which provides separately sum types,
recursive types, tuple types, and equality types, such that
they can be combined to provide the functionality tra-
ditionally provided by algebraic data types or inductive
types, making it better suited as a compiler intermediate
language.

• Akind of case-analysis construct where the default branch
also gets refined type information witnessing in an effi-
cient way the branches already tested.

• A type-preserving translation of terms from this lan-
guage to a predicative version of the Calculus of Induc-
tive Constructions.

2 Problem Description
In this section, we briefly present the two problems our
design aims to address. A common way to add inductive
types to a language is to extend it as follows (mostly taken
from Giménez [1994]):

(index) i ∈ N
(term) e,b, c, τ ::= ... | Ind(x :τ ) ⟨®c⟩

| Con(i, e)

| ⟨τr ⟩Case e of
〈
®b
〉

| Fixi x : τ = e

Where “Ind(x :τ ) ⟨®c⟩” is the type constructor where “®c” holds
the type of each possible constructor, “Con(i, e)” is the value
constructor for the ith constructor of the inductive type “e”,
Case is the eliminator and Fix allows the definition of func-
tions that perform structural recursion on those inductive
data types. The “Ind(x :τ ) ⟨®c⟩” constructor is a neat combi-
nation of recursive type, sum type, tuple type, and indexed
type families.

The main shortcoming of that presentation, for our use, is
that Case is a large construct whose elements cannot be
taken apart. While it is often perfectly adequate for source
code, this lack of fine-granularity can be inconvenient in
lower-level code. For example, you cannot first test which
constructor was used and only later, if needed, extract some
fields from it, because the two operations have to be per-
formed together. Similarly its naive code size and run-time
complexity has as lower bound the number of fields of e ,
which is impractical when selecting a single field from a
large tuple, such as a tuple holding all the definitions ex-
ported from a module.

For these reasons, we want to introduce tuples separately
from inductive types. To do that, we will deconstruct induc-
tive types into their constitutive elements: tuple types, sum
types, recursive types, and equality types.

2.1 Native Tuples
Providing algebraic data types and tuples without overlap is
not a new problem.

Tagged Sums For example, Standard ML [Milner et al.
1997] solved it years ago by restricting its datatype con-
structors to carry exactly one element, no more no less. In
other words, SML’s datatype only provides sum types and
recursive types, and tuples are provided separately.
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While it is elegant, this solution suffers from an inefficiency
we wanted to avoid. For example, with a datatype like:

datatype 'a list =
| cons of 'a * 'a list
| nil

a value like “cons(1, nil)” will generally have to be repre-
sented as two heap objects: one containing the “(1, nil)”
tuple and another containing the cons tag and a pointer
to the tuple. A sufficiently smart compiler may be able to
eliminate this indirection, of course, but it can be surpris-
ingly complicated and costly to optimize data representation
this way, requiring coercions like those in [Leroy 1992, 1997;
Shao 1997], for example if you need to preserve the expected
compatibility with a signature which specifies “cons of ’b”.

First-class Tags Another approach is to let the user manip-
ulate tags explicitly as first-class values, making it possible
for the user to make their own sum types as tuples whose
first field holds a tag and whose subsequent fields have a
type that varies according to that tag.

While this approach can be used as well, it comes with both
theoretical and practical problems: on the theoretical side,
this only works when the universe level of the fields does
not depend on the tag; and on the practical side, this requires
storing the tag as an extra normal field, whereas in a standard
implementation of datatypes, tags are stored typically at no
extra cost in a special header word that is needed for memory
management purposes anyway.

2.2 Typing the Default Branch
When performing case analysis in Coq and other languages
of the family, the default branch does not get any typing
refinement. More specifically, let’s consider the following
example where “E” is assumed to be a list:

match E with
| nil => EXP1
| _ => EXP2

The typing of “EXP1” can take advantage of the fact that we
know “E” was found to be equal to “nil”, but the typing of
“EXP2” has no such benefit: it cannot take advantage of the
fact that we have found “E” to be different from “nil”.

One might be tempted to solve this problem by changing Coq
such that default branches get additional typing information,
either providing them with a proof that the match target is
different from all the mentioned branches (i.e. a proof that
“not (E = nil)” in the above example), or providing them
with a proof that the match target is equal to one of the
remaining possibilities (i.e. a proof that “∃x,y. E = cons
x y” in the above example).

(var) x,y, t ∈ V

(level) ℓ ∈ N
(ctxt) Γ,∆ ::= • | Γ, x :τ
(sort) s ::= Typeℓ
(term) e, τ ::= s | x | λx :τ .e | e1 e2 | (x :τ1) → τ2

S = { Typeℓ | ℓ ∈ N }

A = { (Typeℓ : Typeℓ+1) | ℓ ∈ N }

R = { (Typeℓ1, Typeℓ2, Typeℓ3 ) | ℓ3 = ℓ1 ⊔ ℓ2 }

Figure 1. Our base calculus CCω as a PTS

But this suffers from both theoretical and practical problems:
first, while it might seem easy to do it for the source lan-
guage of Coq, it is not clear how that would work for its
core language, where things like “=” and “∃” are themselves
encoded as inductive types; second, those additional proofs
would tend to grow fairly large.

Since this kind of typing refinement of the default branch is
only useful for some fraction of all case analyses, we want
a solution that does not incur such excessive extra costs, or
more specifically, we want a solution where this refinement
is cheap enough that it is practical to provide it everywhere.

2.3 The Base Calculus CCω
Our calculus is built on top of a traditional λ-calculus, and
to a first approximation is independent from it, so we will
use the same base calculus for both the reference calculus
of inductive constructions (CIC) as well as our calculus of
united constructions (CUC) which we present in the next
few sections in the form of a collection of extensions.

Figure 1 shows our base language CCω as a pure type system
(PTS) [Barendregt 1991]. It is a variant of CoCwith a tower of
universes à la ECC [Luo 1989]. Note that we use the notation
“(x :τ1) → τ2” for the dependent function type, which can of
course be shortened to “τ1 → τ2” when “x” does not occur in
“τ2”. We usually use the metavariable “τ ” to stand for a term
which is supposed to be a type, i.e. whose type is a sort.

Because inductive types have non-trivial interactions with
impredicativity, we did not include an impredicative universe
at the bottom: all the calculi presented in this paper are fully
predicative.

The typing judgment of the base language is denoted “Γ ⊢

e : τ ”, and we will annotate it as “Γ ⊢U e : τ ” resp. “Γ ⊢I e : τ ”
when we talk about the typing derivation of CUC resp. CIC.
Similarly, while the base language’s reduction rule is written
“e { e ′”, we will write it as “e U

{ e ′” or “e I
{ e ′” when we

talk about the reduction rule for CUC resp. CIC.
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(var) x,y, t ∈ V

(level) ℓ ∈ N
(label) l ∈ L

(sort) s ::= Typeℓ
(ctxt) Γ,∆ ::= • | Γ, x :τ
(term) e, τ ,p ::= s | x | λx :τ .e | e1 e2 | (x :τ1) → τ2

| Tuplel ∆ | tuplel ∆ ®e | let ®x = e1 in e2
| e1 ≡ e2 | refl e | J e≡ ef e
| τ1 ∪ τ2 | cast τ1⊆τ2 e |

(switch e | l x x≡ ⇒ el | y y≡ ⇒ ed )
| µix :τ .e | µx :τ .e |

fold τ ®p e | let fold τ ®p x = e1 in e2

Figure 2. Calculus of united constructions

3 The Calculus of United Constructions
Just like the full CIC, our new calculus is fairly large, so
we present it in several steps: the tuples, the equality type,
the sums, and finally the recursive definitions. The different
parts are not completely independent from each other, which
largely dictates the order in which they are presented.

The syntax of the complete language is the following shown
in Figure 2. The terms are spread over 5 groups, where the
first group reproduces the terms of the base calculus (Sec. 2.3),
the second shows the terms of the tuple types (Sec. 3.1), the
third shows the terms of the equality types (Sec. 3.2), the
fourth shows the terms of the union types (Sec. 3.3), and the
last shows the terms of the recursive functions and recursive
types (Sec. 3.4).

Clearly, this calculus is much larger than the base calculus.
It is also larger than the CIC: as often, there is a tension
between keeping the language small and making it efficient.
The criteria which drove us to this design favors a larger
language as long as the different parts are orthogonal and
are themselves simpler or more general.

3.1 Labeled Tuples
At its core, our solution to our design problem is very sim-
ple: instead of using “plain” tuples on one side and tagged
sums on the other, as is done in SML, we associate the tags
(which we call labels) with the tuples, so that our sums can
be reduced to mere (non-disjoint) union types. The extra cost
of adding a label to every tuple is very minor; more specif-
ically in most cases those labels can be stored at no extra
cost within the metadata needed for memory management
purposes, and even in the worst case it just adds one extra
field to those heap objects, which is still much cheaper than
the extra heap object and indirection introduced by SML’s
tagged sums.

e .i ≡ let ®x = e in xi (syntactic sugar)

Γ ⊢U Tuplel • : Type0

Γ ⊢U Tuplel ∆ : Typeℓ1 Γ,∆ ⊢U τ : Typeℓ2
Γ ⊢U Tuplel ∆, x :τ : Type(ℓ1 ⊔ ℓ2)

|®e | = 0
Γ ⊢U ®e : •

Γ ⊢U ®e : ∆ Γ ⊢U ei : τi [®e/∆]
Γ ⊢U ®e, ei : ∆, x :τi

Γ ⊢U ®e : ∆
Γ ⊢U tuplel ∆ ®e : Tuplel ∆

Γ ⊢U e1 : Tuplel ∆
Γ,∆ ⊢U e2 : τ ∆ = x0 :τ0, .., xn :τn

Γ ⊢U let ®x = e1 in e2 : τ [e1.0, ..., e1.n/x0, ..., xn]

Figure 3. Typing rule of labeled tuples

To add tuples to our base language, our language’s syntax is
extended as follows:

(label) l ∈ L

(term) e, τ ::= ... | Tuplel ∆ | tuplel ∆ ®e | let ®x = e1 in e2

“Tuplel ∆” is the type constructor for tupleswith label l where
∆ is the list of (possibly dependent) field types; “tuplel ∆ ®e”
is the introduction form which lets you actually build tuple
values; and “let ®x = e1 in e2” is the eliminator which extracts
the values of the tuple e1. Figure 3 shows the typing rules
for our labeled tuples. In there we also define a projection
“e .i” as syntactic sugar for “let ®x = e in xi ”, although it could
also be provided as a built-in construct. We will discuss the
choice of elimination forms in Sec. 6. Reduction rules of the
language are extended with the obvious congruence rules as
well as the following primitive reduction:

let ®x = (tuplel _ ®e) in e
U
{ e[®e/®x]

The form of our tuple constructor “tuplel ∆ ®e” was chosen to
be “saturated” in the sense that all elements of the tuple have
to be provided, rather than providing a tuple constructor
which only takes the ∆ argument and then receives the tuple
elements in a curried fashion, as is done for example in CIC’s
inductive constructors and in Haskell’s datatype construc-
tors. This was done for two reasons: most importantly, it
makes the construct directly correspond to the actual allo-
cation and initialization of the heap object, so the cost of
any extra closures needed for curried use have to be made
explicit in the code; second it preserves the property that
any value of arrow type has to be of the form “λx :τ .e”. This
second point turned out to be unimportant: not only we do
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Γ ⊢U e1 : τ Γ ⊢U e2 : τ Γ ⊢U τ : Typeℓ
Γ ⊢U e1 ≡ e2 : Typeℓ

Γ ⊢U e : τ
Γ ⊢U refl e : e ≡ e

Γ ⊢U e≡ : e1 ≡ e2 Γ ⊢U ef e1 : s Γ ⊢U e : ef e1
Γ ⊢U J e≡ ef e : ef e2

Figure 4. Typing rules of the equality types

not make use of this property, but later parts of our system
break it anyway.

3.2 Equality
Armed with tuples, we can now do most of what is done
with single-constructor non-recursive types, but not all: our
tuples do not offer us any way to define the equivalent of
those single-constructor inductive types which are indexed.
The main example of such a type is the equality type. In CoC,
the equality type can be defined using the impredicative
encoding, with the usual associated restrictions, but our base
calculus being predicative we don’t even have that option.
So we extend our language with an equality type:

(term) e, τ ::= ... | e1 ≡ e2 | refl e | J e≡ ef e

≡ is the type constructor for this new equality type; refl is
the corresponding introduction form, and J its eliminator
which encodes the Leibniz equality. Figure 4 shows the cor-
responding typing rules. The corresponding new primitive
reduction rule is the following:

J (refl _) _ x U
{ x

where the underscores represent subterms which are ignored
by the rule.

While the equality type was not the only single-constructor
inductive type we could not define, we can now define also
all the other single-constructor inductive types by adding
appropriate fields holding proofs of the needed type equali-
ties.

For example, in a language with indexed inductive types, we
can define the traditional length-indexed list type as follows:

type NList (α : Type) : Nat -> Type
| nil : NList α 0
| cons : α -> NList α l -> NList α (S l);

In the absence of indexed inductive types this can be eas-
ily replaced by the following definition which uses explicit
equality witnesses instead of indices:

type NList (α : Type) (l : Nat) : Type

Γ ⊢U τ1 : Typeℓ1 Γ ⊢U τ1 : Typeℓ1
Γ ⊢U τ1 ∪ τ2 : Typeℓ1 ⊔ ℓ2

Γ ⊢U τ : s Γ ⊢U e : τe τe ⊆ τ

Γ ⊢U cast τe⊆τ e : τ

Γ ⊢U e : τe τe
l
=⇒ τl ∪ τd τl , ⊥ τd , ⊥

Γ, x :τl , x≡ : (e ≡ cast τl⊆τe x) ⊢U el : τr
Γ,y :τd ,y≡ : (e ≡ cast τd⊆τe y) ⊢U ed : τr

Γ ⊢U switch e | l x x≡ ⇒ el | y y≡ ⇒ ed : τr

Figure 5. Typing rules for union types

| nil : (l ≡ 0) -> NList α l
| cons : α -> NList α l'

-> (l ≡ S l') -> NList α l;

The absence of indexed types also has the benefit that case
analysis does not need to make special allowances to support
type refinement of the indices: the explicit equality witnesses
can be used to get the same effect. The same approach is
used in GHC, of course [Sulzmann et al. 2007].

3.3 Unions
Since our tuples carry labels, we can rely on those to dis-
criminate between alternatives of sum types, which frees us
from the need to use disjoint unions and instead we can use
the leaner untagged union types. We extend the syntax with
a new union type as well as corresponding introduction and
elimination constructs:

(term) e, τ ::= ... | τ1 ∪ τ2
| cast τ1⊆τ2 e
| switch e
| l x x≡ ⇒ el
| y y≡ ⇒ ed

∪ is the type constructor for unions; The “cast τ1⊆τ2 e” op-
eration is the corresponding introduction form; it should be
read as a form of weakening of “e” from a subtype “τ1” to a su-
pertype “τ2”, at no run-time cost; while the switch construct
“switch e | l x x≡ ⇒ el | y y≡ ⇒ ed ” is the elimination form,
which lets us recover the corresponding information, with a
run-time cost comparable to that of a C switch: it looks at the
label of tuple “e” and jumps to “el ” if it’s equal to “l” and to
“ed ” otherwise, but it does not perform any further extraction
of data. In the switch’s branches, “x/x≡” and “y/y≡” are pairs
of variables which get bound respectively to the value of “e”
strengthened to a more specific type and to a proof that this
new variable is indeed just a strengthened “e”.

Figure 5 shows the typing rules for unions. These introduce
three new rules, one per construct, added to the main typing
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cast _⊆τ2 (cast τ1⊆_ e)
U
{ cast τ1⊆τ2 e cast τ⊆τ e

U
{ e

e = cast τ⊆τe e ′ e ′ = tuplel ′ ∆ ®e τe
l
=⇒ τl ∪ τd

switch e | l x x≡ ⇒ el | y y≡ ⇒ ed
U
{

{
el [refl e, cast τ⊆τl e ′/x≡, x] if l = l ′
ed [refl e, cast τ⊆τd e ′/y≡,y] otherwise

Figure 6. Reduction rules for the union types

�
�

�
�

τ
l
=⇒ τl ∪ τd Split τ according to l

τ1 ∪′ τ2 Like ∪ but eliminating ⊥

τ1 ⊆ τ2 τ1 is a subtype of τ2

Tuplel ∆
l
=⇒ Tuplel ∆ ∪ ⊥

τ1
l
=⇒ τl1 ∪ τd1 τ2

l
=⇒ τl2 ∪ τd2

τ1 ∪ τ2
l
=⇒ (τl1 ∪′ τl2) ∪ (τd1 ∪′ τd2)

l ′ , l

Tuplel ′ ∆
l
=⇒ ⊥ ∪ Tuplel ′ ∆

⊥ ∪′ τ = τ τ ∪′ ⊥ = τ τ1 ∪′ τ2 = τ1 ∪ τ2

τ ⊆ τ

τ1 ⊆ τ2

τ1 ⊆ τ2 ∪ τ3

τ1 ⊆ τ3

τ1 ⊆ τ2 ∪ τ3

τ1 ⊆ τ3 τ2 ⊆ τ3

τ1 ∪ τ2 ⊆ τ3

Figure 7. Auxiliary rules for union types

judgment and they rely on three auxiliary judgments pre-
sented in Figure 7: the subtype relation “τ1 ⊆ τ2” used for
cast; the “smart constructor” “τ1 ∪′ τ2” which is like∪ except
it tries to eliminate the “⊥” elements which might have been

introduced; and finally “τ
l
=⇒ τl ∪ τd ” which plays two

roles. First, it is used to ensure that switch is only applied
to (weakened) tuples, which is indispensable at run-time so
that we can safely go fetch the object’s label even though its
type is a union type rather than a tuple type. Second, it is
used to find the refined type of “e” in each branch, splitting
“τ ” into the part “τl ” that matches the label “l” and the part
“τd ” which does not.

As presented, our switch statement has the unusual property
that it tests a single label before falling through to a default
branch, but since the default branch properly preserves the
information that this label failed to match, it can be trivially
chained in order to select between several possible labels.
Also it is straightforward to extend the language to allow
the presence of an arbitrary number of branches before the
default branch, of course.

Another unusual property of this switch statement, com-
pared to the case analysis rule of traditional inductive types
is that the return type of all branches is the same: the type
refinement needed for dependent elimination is replaced
by the explicit equality proof bound to x≡ or y≡ witnessing
which branch was chosen.

Reduction rules of the language are extended with the ob-
vious congruence rules as well as the primitive reductions
shown in Figure 6. These reduction rules are fairly complex
to our taste, especially compared to something like the β
rule, but they will be simplified in the erasure semantics
presented in Section 4.

3.4 Recursion
The final missing component of inductive types is that which
gives it its name: the ability to define recursive types and to
perform induction on values of those types. Both of those
correspond to forms of recursive definitions, one of them for
types and the other for functions.We could handle both cases
within the same fixpoint construct, but since they require
different termination checking rules, we have kept the two
syntactically separate. Concretely, the syntax is extended as
follows:

(index) i ∈ N
(term) e, τ ,p ::= ... | µix :τ .e | µx :τ .e

| fold τ ®p e | let fold τ ®p x = e1 in e2

µx :τ .e is the fixpoint construct that can be used to define
recursive types, as long as they obey the customary strict
positivity constraint; µix :τ .e is the fixpoint construct that
can be used to define recursive functions when they abide
by a syntactic restriction that ensures that the ith argument
becomes smaller at each recursive call. The µx : τ .e type
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unfold τ ®p e ≡ let fold τ ®p x = e in x (syntactic sugar)

Γ ⊢U τ : s Γ, x :τ ⊢U e : τ
e = λ−−−→z :τz .e ′ x < fv(®τ ) x ⊢U e ′ pos

Γ ⊢U µx :τ .e : τ

Γ ⊢U τ : s Γ, x :τ ⊢U e : τ
e = λ−−→y : _.eb i < |y | x ; i;yi ; ∅ ⊢U eb term

Γ ⊢U µix :τ .e : τ

Γ,−−−→z :τz,y : (eτ [τ/x]) ®z ⊢U e2 : τ2 ®z ∩ fv(e2) = ∅

Γ ⊢U τ :
−−−−→
(z :τz ) → s τ = µx : _.eτ Γ ⊢U e1 : τ ®p

Γ ⊢U let fold τ ®p y = e1 in e2 : τ2[®p, unfold τ ®p e1/®z,y]

Γ ⊢U e : (eτ [τ/x]) ®p Γ ⊢U τ : _ τ = µx : _.eτ
Γ ⊢U fold τ ®p e : τ ®p

Figure 8. Recursive definitions

constructor has corresponding introduction and elimination
forms to fold and unfold the recursion.

As usual, additionally to the congruence rules, the reduction
rules are extended with the following primitive reduction:

let fold _ _ x = (fold _ _ e1) in e2
U
{ e2[e1/x]

ei = tuplel _ _ ∨ ei = cast _⊆_ (tuplel _ _)

(µix :τ .e) ®e
U
{ (e[µix :τ .e/x]) ®e

The first is the usual β-like application of an elimination
operation on the corresponding introduction, but the second
is less usual: µix :τ .e is a value constructor with no matching
type constructor nor elimination construct. Its elimination
rule is designed to carefully unfold the function often enough
not to get in the way, but not too often to cause infinite un-
foldings. This rule is directly adapted from the corresponding
one presented by Giménez [1994].

The typing rules are given in Figure 8. As was the case for
tuples, these include the definition of syntactic sugar, here of
the form unfold τ ®p e . As was the case for union types, the
figure shows first the four new rules added to themain typing
judgment, one for each new construct, and rely on some
auxiliary judgments, shown in Figure 9: first the x ⊢U τ pos
judgment, which enforces the strict positivity rule on µx :τ .e ,
and then the xf ; i;xi ;ν ⊢U e term judgment which enforces
termination of µixf :τ .e .

The positivity and termination check are adapted from that
of Giménez [1994]. Like his, our positivity rule for our (de-
pendent) tuples enforces that we cannot have a dependence
on a recursive argument: if field xi refers to the recursive

�� ��x ⊢U e pos e is positive in x

x < fv(e)

x ⊢U e pos

x < fv(®e)

x ⊢U x ®e pos

x ⊢U e pos x < fv(τ )

x ⊢U (y :τ ) → e pos

∆ = x0 :τ0, .., xn :τn
∀i . x < fv(τi ) ∨ (x ⊢U τi pos ∧ ∀j > i . xi < fv(τj ))

x ⊢U Tuplel ∆ pos

x ⊢U τ1 pos x ⊢U τ2 pos

x ⊢U τ1 ∪ τ2 pos

x ⊢U e pos x < fv(τ )

x ⊢U µy :τ .e pos�
�

�
�

ν ⊢U e small e is small assuming ν are small
xf ; i;xi ;ν ⊢U e term all ith args of xf smaller than

xi in e , given that ν are smaller

x ∈ ν

ν ⊢U x small

ν ⊢U e small

ν ⊢U (e _) small

xf < fv(e)

xf ; i;xi ;ν ⊢U e term

xf ; i;xi ;ν ⊢U ®e term i < |e | ν ⊢U ei small

xf ; i;xi ;ν ⊢U xf ®e term

xf ; i;xi ;ν ⊢U e1 term
ν ∪ {xi } ⊢U e1 small xf ; i;xi ; ®y ∪ ν ⊢U e2 term

xf ; i;xi ;ν ⊢U let ®y = e1 in e2 term

xf ; i;xi ;ν ⊢U e1 term xf ; i;xi ;ν ⊢U τ ®p term
ν ∪ {xi } ⊢U e1 small xf ; i;xi ; {y} ∪ ν ⊢U e2 term

xf ; i;xi ;ν ⊢U let fold τ ®p y = e1 in e2 term

xf ; i;xi ;ν ⊢U e term xf ; i;xi ; {x} ∪ ν ⊢U el term
ν ∪ {xi } ⊢U e small xf ; i;xi ; {y} ∪ ν ⊢U ed term

xf ; i;xi ;ν ⊢U switch e | l x x≡ ⇒ el | y y≡ ⇒ ed term

Figure 9. Termination conditions

argument x , then subsequent fields cannot depend on xi
(i.e. the type of subsequent fields cannot refer to xi ). Con-
trary to his, we allow nested recursive definitions (in the
last rule); and notice that it does not check that those are
themselves positive, because this verification will have been
done already while type checking them.
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We do not show the usual congruence in the rules for the
termination check. This check considers switch operations,
field extractions from tuples, unfoldings, as well as function
calls, as those operations which return something smaller.
ν keeps track of variables being smaller than the original
argument, while ν ⊢U e small tests the same for expressions.
This same problem applies to the case of function calls, of
course, but it is solved differently for them. This irregularity
is solely here to better match the rules used in CIC so as to
make it easier to see the correspondence between the two.

4 Erasure
The intention of our calculus is for “cast” to have no run-time
cost. In this section, we show that it is indeed the case, by
defining an erasure function and showing that the evaluation
and the erasure commute. The erasure function (·)∗ is de-
fined recursively on the syntax of terms in a straightforward
manner:

x∗ 7→ x
(e1 e2)∗ 7→ e1∗ e2∗
((x :τ1) → τ2)∗ 7→ (x :τ1∗) → τ2∗
(λx :τ .e)∗ 7→ λx :τ∗.e∗
· · · 7→ · · ·

(cast τ1⊆τ2 e)∗ 7→ e∗

The · · · stand for all the remaining constructs where the
function simply recurses in the obvious way on all subterms.
We do not introduce a new syntax for erased terms because
they simply use a subset of the syntax of the non-erased
terms. On the other hand, we do need to introduce a new
reduction judgment e1

e
{ e2. Other than the usual congru-

ence rules, the reduction rules of the erased calculus are the
following:

(λx : _.e1) e2
e
{ e1[e2/x] J (refl _) _ x

e
{ x

let ®x = (tuplel _ ®e) in e
e
{ e[®e/®x]

let fold _ _ x = (fold _ _ e1) in e2
e
{ e2[e1/x]

e = tuplel ′ _ _
switch e | l x x≡ ⇒ el | y y≡ ⇒ ed

e
{

{
el [refl e, e/x≡, x] if l = l ′
ed [refl e, e/y≡,y] otherwise

e = µix : _.e ′ ei = tuplel _ _

e ®e
e
{ (e ′[e/x]) ®e

Note that the first few rules are taken unmodified from U
{,

and only the rules for switch and for the unfolding of recur-
sive functions are affected by the erasure of cast.

We can show that this erasure calculus is consistent with the
original calculus, and hence that we can safely implement
cast as a no-op:

Lemma 4.1 (Erasure). Assuming Γ ⊢U e1 : τ , we have:

• If e1
U
{ e2 then either e1∗ = e2∗ or e1∗

e
{ e2∗.

• If e1∗
e
{ e2 then there exists an e3 such that e3∗ = e2 and

e1
U
{∗ e3.

Proof. By induction on the derivation of e1
U
{ e2 resp. e1∗

e
{

e2. □

5 Type Soundness
Now that we have defined a calculus which provides us
with the intended run-time cost, we show that this calculus
is sound. Instead of showing directly, we showing it to be
sound with respect to a more classical presentation of in-
ductive types. We will first present a predicative CIC as an
extension of the base calculus shown in Sec. 2 with inductive
types in the style of Giménez [1994], and then show that any
expression of our CUC can be compiled to this CIC.

5.1 Inductive Types
We add inductive types following the style of Giménez [1994]
which separates induction into case analysis and recursive
definitions, combined with a syntactic check that the recur-
sive calls correspond to a structural induction. The syntax
of the base language is extended as follows:

(index) i ∈ N
(term) e,b, c, τ ::= ... | Ind(x :τ ) ⟨®c⟩

| Con(i, e)

| ⟨τr ⟩Case e of
〈
®b
〉

| Fixi x : τ = e

Ind(x :τ ) ⟨®c⟩ is an inductive type of kind τ with |®c | construc-
tors where ci is the type of the ith constructor; Con(i, e) is
the ith constructor of the inductive type e ; ⟨τr ⟩Case e of

〈
®b
〉

performs case analysis on an object e of inductive type; for
an object built with the ith constructor, branch bi will be
called, passing to it the arguments that were passed to the
constructor; and finally Fixi x : τ = e defines a recursive
function which performs a structural induction on its ith
argument.

Figure 10 shows the new typing rules and reduction rules
introduced for those inductive types, as well as new auxiliary
judgments to enforce that inductive types are strictly positive
and that recursive definitions are terminating. Beside the
slightly different syntax (and the congruence rules we do
not show), our system differs from that of Giménez [1994]
in the following aspects:
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Γ ⊢I e : τ e has type τ in Γ

e
I
{ e ′ e reduces to e ′

e = Ind(x :τ ) ⟨®c⟩ Γ ⊢I e : τ
Γ ⊢I Con(i, e) : ci [x/e]

Γ ⊢I τ : Typeℓ+1 τ =
−−−→
(_ :_) → Typeℓ ∀i . Γ, x :τ ⊢I ci : Typeℓ x ;x ⊢I ci con

Γ ⊢I Ind(x :τ ) ⟨®c⟩ : τ

Γ ⊢I e : τI ®p τI = Ind(x :
−−−−→
(z :τz ) → s) ⟨®c⟩ Γ ⊢I τr :

−−−−→
(z :τz ) → τI ®z → s

∀i . ci =
−−−−→
(y :τy ) → x ®p ′ Γ ⊢I bi :

−−−−−−−−−−→
(y :τy [τI /x]) → τr ®p ′ (Con(i, τI ) ®y)

Γ ⊢I ⟨τr ⟩Case e of
〈
®b
〉
: τr ®p e

Γ ⊢I τ : s Γ, xf :τ ⊢I e : τ e = λ−−→y : _.λxi : _.eb i = |y | xf ; i;xi ; ∅ ⊢U eb term

Γ ⊢I Fixi xf : τ = e : τ

⟨τr ⟩Case (Con(i, e) ®e) of
〈
®b
〉

I
{ bi ®e

i < |®e | ei = Con(_, _) e = Fixi x : τ = ef

e ®e
I
{ (ef [e/x]) ®e�

�
�

x ⊢I e pos e is positive in x

x ;y ⊢I e con e is the type of a constructor of y, positive in x

x < fv(®e)

x ⊢I x ®e pos

x ⊢I e pos x < fv(τ )

x ⊢I (y :τ ) → e pos

x < fv(®e) x < fv(τ ) ∀i . x ;y ⊢I ci con

x ⊢I (Ind(y :τ ) ⟨®c⟩) ®e pos

x < fv(®e)

x ;y ⊢I y ®e con

x ;y ⊢I e con x < fv(τ )

x ;y ⊢I (z :τ ) → e con

x ;y ⊢I e con x ⊢I τ pos

x ;y ⊢I τ → e con

�
�

�

ν ⊢I e small e is small assuming ν are small

xf ; i;xi ;ν ⊢I e term ith arg of xf always smaller than xi in e , given that ν are smaller

x ∈ ν

ν ⊢I x small

ν ⊢I e small

ν ⊢I (e _) small

xf < fv(e)

xf ; i;xi ;ν ⊢I e term

xf ; i;xi ;ν ⊢I ®e term i < |e | ν ⊢I ei small

xf ; i;xi ;ν ⊢I xf ®e term

xf ; i;xi ;ν ⊢I e term xf ; i;xi ;ν ⊢I τr term xf ; i;xi ;ν ⊢I τe term
ν ∪ {xi } ⊢I e small ∀i . bi = λ−−→y : _.ei xf ; i;xi ;ν ∪ ®y ⊢I bi term

xf ; i;xi ;ν ⊢I ⟨τr ⟩Case e of
〈
®b
〉

term

Figure 10. Inductive types

• Our rules are extended to a tower of universes and the
typing rule of Ind enforces predicativity;

• Giménez does not include the Ind rule of x ⊢I e pos;
which allows us to define for example an inductive type
t where one of the fields has type List t . Most proof as-
sistants allow such a relaxation of the positivity require-
ment, and we use this flexibility in our encoding.

• The termination check on Case is simpler in that it con-
siders all fields of an object to be smaller than the object
analyzed, whereas Giménez limits this to the fields which
are in a recursive position. Giménez needs this additional
restriction because his Set universe is impredicative, so
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Unit = Ind(x :Type0) ⟨x⟩
unit = Con(0,Unit)
Σx :τ1.τ2 = Ind(y :Type?) ⟨(x :τ1) → τ2 → y⟩
⟨x = e1, e2 : τ2⟩ = Con(0, Σx :τ1.τ2) e1 e2
eq e1 = Ind(x :? → x) ⟨x e1⟩
refl e1 = Con(0, eq e1)
J e≡ ef e = ⟨λx :?.λ_ :?.ef x⟩Case e≡ of ⟨e⟩
Either τ1 τ2 = Ind(x :Type?) ⟨τ1 → x, τ1 → x⟩

Jτ ⊆ τ KI = λx :Jτ KI .x
Jτ1 ∪ τ2 ⊆ τ3KI = λx :Either Jτ1KI Jτ2KI .

⟨λ_ :?.Jτ3KI ⟩Case x of〈
Jτ1 ⊆ τ3KI
Jτ2 ⊆ τ3KI

〉
Jτ1 ⊆ τ2 ∪ τ3KI = λx :τ1.Con(0, Either Jτ2KI Jτ3KI )

(Jτ1 ⊆ τ2KI x)
if τ1 ⊆ τ2

Jτ1 ⊆ τ2 ∪ τ3KI = λx :τ1.Con(1, Either Jτ2KI Jτ3KI )
(Jτ1 ⊆ τ3KI x)

if τ1 ⊆ τ3

Figure 11. Auxiliary definitions used to map CUC to CIC

he needs to disallow infinite recursions such as the fol-
lowing one, hinted at in [Coquand 1992]:

D = Ind(D :Set) ⟨((t :Set) → t → t) → D⟩ ;
d = Con(0,D) identity;
f = Fix0 f : D → ⊥ =

λd :D.⟨λ_ :D.⊥⟩Case d of ⟨λid : _. f (id D d)⟩;
oops = f d ;

5.2 CUC to CIC
We present a translation J·KI which takes any type derivation
of CUC and translates it to an equivalent expression in CIC.
The complete definition of J·KI can be seen in Figure 12,
but the idea is that the elements taken from the common
language are kept unchanged and the additional types are
mapped as follows:

JTuplel •KI = Unit
JTuplel x :τx ,∆KI = Σx :Jτx KI . JTuplel ∆KI
Je1 ≡ e2KI = eq Je1KI Je2KI
Jτ1 ∪ τ2KI = Either Jτ1KI Jτ2KIq
µx :τ .(λ−−−→z :τz .e)

y
I = Ind(x :Jτ KI )〈−−−−−−−→

(z :JτzKI ) → JeKI → x ®z
〉

Where the right hand sides use auxiliary definitions de-
scribed in Figure 11. Notice also that, as an abuse of notation,
we write JeKI instead of JΓ ⊢U e : τ KI .

Contrary to the erasure semantics, in this encoding, cast is
not a no-op. Instead, it’s the labels on tuples which are ig-
nored. Indeed, since our language distinguishes τ1 ∪ τ2 from

JxKI = x
Jλx :τ1.eKI = λx :Jτ1KI .JeKI
Je1 e2KI = Je1KI Je2KI
J(x :τ1) → τ2KI = (x :Jτ1KI ) → Jτ2KI
JTuplel •KI = Unit
JTuplel x :τx ,∆KI = Σx :Jτx KI . JTuplel ∆KI
Jtuplel ∆ ·KI = unit
Jtuplel (x :ττ ,∆) e, ®eKI = ⟨x = JeKI ,

Jtuplel ∆ ®eKI : JTuplel ∆KI ⟩
Jlet · = e1 in e2KI = Je2KI
Jlet x, ®x = e1 in e2KI = ⟨τr ⟩Case Je1KI of〈

λx :Jτx KI .λy :JTuplel ∆KI .
Jlet ®x = y in e2KI

〉
where Γ ⊢U e1 : Tuplel x :τx ,∆

Γ, x :τx ,∆ ⊢U e2 : τ2
τr = λxe1 :JTuplel x :τx ,∆KI .Jτ2[xe1 .0/x]KI

Je1 ≡ e2KI = eq Je1KI Je2KI
Jrefl e1KI = refl Je1KIq
J e≡ ef e

y
I = J Je≡KI

q
ef

y
I JeKI

Jµix :τ .eKI = Fixi x : Jτ KI = JeKIq
µx :τ .(λ−−−→z :τz .e)

y
I = Ind(x :Jτ KI )〈−−−−−−−→

(z :JτzKI ) → JeKI → x ®z
〉

Jfold τ ®p eKI = Con(Jτ KI , 0) ®JpKI JeKIs
let fold τ ®p y = e1
in e2

{

I
=
⟨τr ⟩Case Je1KI of〈

λ
−−−−−→
z :JτzKI .λy :τy .Je2KI

〉
where Γ,−−−→z :τz,y : (eτ [τ/x]) ®z ⊢U e2 : τ2

τ = µx : _.λ−−−→z :τz .eτ
τy = Jeτ [τ/x]KI
τr = λ

−−−−−→
z :JτzKI .λye1 :Jτ KI ®z.
Jτ2[unfold τ ®p ye1/y]KI

Jτ1 ∪ τ2KI = Either Jτ1KI Jτ2KI
Jcast τ1⊆τ2 eKI = Jτ1 ⊆ τ2KI JeKI
u

v
switch e
| l x x≡ ⇒ el
| y y≡ ⇒ ed

}

~

I

=


Jel [e, refl e/x, x≡]KI if τd = ⊥

Jed [e, refl e/y,y≡]KI if τl = ⊥

⟨τr ⟩Case JeKI of〈
λx1 :Jτ1KI .e1, λx2 :Jτ2KI .e2

〉
(refl JeKI )

where Γ ⊢U e : τe
τe = τ1 ∪ τ2 and τe

l
=⇒ τl ∪ τd

τ1
l
=⇒ τl1 ∪ τd1 and τ2

l
=⇒ τl2 ∪ τd2

ei = λxe≡ :Je ≡ cast τi⊆τe xiKI .u

wwww
v

switch xi
| l x ′ x ′

≡ ⇒

el [cast τl i⊆τl x ′, J x ′
≡ ? e≡/x, x≡]

| y ′ y ′
≡ ⇒

ed [cast τdi⊆τd y ′, J x ′
≡ ? e≡/y,y≡]

}

����
~

I

Figure 12. Mapping CUC to CIC
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τ2 ∪ τ1, there is a redundancy of information between tuple
labels and ordering in union types. In the erasure semantics
we used this redundancy to reduce the cost of union types,
whereas here we use it to eliminate the need to represent
tuple labels.

Lemma 5.1 (Type Preserving translation). Given Γ ⊢U e : τ ,
we have Γ ⊢U τ : s and JΓKI ⊢I JΓ ⊢U e : τ KI : JΓ ⊢U τ : sKI .

Proof. It’s easy to show that given Γ ⊢U e : τ we have Γ ⊢U
τ : s , by induction on the derivation. The remaining part
of the proof is longer but is also done by induction on the
derivation. It requires proving several auxiliary lemmas such
as the fact that a strictly positive recursive type is translated
to a strictly positive inductive type, same for terminating
recursive functions, as well as the fact that e U

{ e ′ implies
JeKI

I
{+ Je ′KI , which itself requires proving that reduction

preserves types. □

Corollary 5.2 (Relative consistency). Assuming there is no
e in CIC such that • ⊢I e : ⊥, then there is no e in CUC such
that • ⊢U e : ⊥.

Proof. Since JΓ ⊢U ⊥ : Type1KI = ⊥ and J•KI = •, we have
that • ⊢U e : ⊥ implies • ⊢I JΓ ⊢U e : ⊥KI : ⊥, so any proof of
⊥ in CUC can be used to find a proof of ⊥ in CIC. □

6 Variations and Extensions
The CUC language as presented here was designed so as
to keep the type preserving translation to CIC reasonably
simple. The ideas can of course be adjusted to different needs.
For example, the typing rules of CUC would benefit from
being bidirectional, which would let us simplify some of the
syntax since things like the ∆ arg of “tuplel ∆ ®e” could be
inferred.

Eliminators One obvious downside of the current presen-
tation is that it still suffers from the fact that an expression
that selects the ith field from a tuple cannot have constant
size but a size proportional to i . But it is easy to remedy it by
making “e .i” into a primitive operation rather than mere syn-
tactic sugar. It can even replace “let ®x = e1 in e2” altogether.
To accompany such change, the termination checker simply
needs to be adjusted accordingly, by adding an “e .i” rule to
the “ν ⊢U e small” judgment.

Similarly, “unfold τ ®p e” can be made into a primitive oper-
ation, or even replace “let fold τ ®p x = e1 in e2” altogether,
adding an “unfold τ ®p e” rule to the “ν ⊢U e small” judgment.

Impredicativity While our calculus is predicative, there
is nothing that should prevent adding an impredicative uni-
verse to it, just as it is done in CIC: this would simply require
adapting the notion of recursive positions in a recursive type

to constrain the structural induction, as well as disallow
strong elimination of large tuples (i.e. tuples that live in Prop
but have fields in higher universes).

Of course, the restriction on strong elimination would imply
that some projections cannot be defined, so it would make
it impossible to do away with the “let ®x = e1 in e2” form.
The same would likely happen if the tuples were extended
with a notion of erasable fields along the lines of the EPTS
and ICC systems [Barras and Bernardo 2008; Miquel 2001;
Mishra-Linger and Sheard 2008].

6.1 Possible Extensions
When writing proofs, η-equality can be very helpful. For
examples, languages like Agda support η-equality rules on
functions as well as on records. It is straightforward to add
corresponding η-equality rules for functions and records to
CUC.

The notion of union type used here is purposefully restrictive,
so an obvious extension would be to use a more flexible
notion of union types, going in a direction such as the set-
theoretic types of Castagna et al. [2016]. Making the union
type more flexible could allow the use of extensible sum
types and first class cases [Blume et al. 2006].

Rather than fold/unfold primitives, the language could lever-
age its primitive equality type and simply provide a way to
get an equality proof between a µ type and its unfolding,
this would make it possible to unfold within an expression
(such as unfold all the elements of a list without having to
traverse the list).

It is very tempting to try and reify some of the judgments in
the type system. For example the judgment “τ1 ⊆ τ2” could be
turned into a type, making it possible to cast to a type that is
not know at compile time. This could fit very naturally into a
system of coercions such as that of Monnier [2007]. Similarly

“τ
l
=⇒ τl ∪ τd ” could be defined as a type, and the ∆ of

“Tuplel l∆” could be a list of types, so code could abstract over
the tail of tuples, like a kind of row polymorphism. Of course,
it begs the question of how to define these types without
relying on themselves, which might be possible using an
approach such as that proposed by Chapman et al. [2010].

7 Related Work
Giménez [1994] was the first effort to align the implemen-
tation of inductive types with that of typical algebraic data-
types, thus significantly improving the efficiency of imple-
mentation of inductive types.

Odersky andWadler [1997] implemented algebraic datatypes
in the JVM by representing them as (abstract) supertypes
where every constructor of the datatype gets a distinct sub-
type. This results in a very similar representation to the one
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used here, where every constructor builds a kind of tuple
annotated with a label (the specific subtype corresponding to
this constructor) and where our cast operation corresponds
to a so-called “up-cast” to the parent type which similarly
incurs no runtime cost.

Sulzmann et al. [2007] shows how to reduce generalized al-
gebraic datatypes by compiling them to a core language that
instead only provides a notion of proof of equality. We use
a similar approach here to encode indexed inductive types,
although by working within the context of a dependent lan-
guage like CC, the equality proofs are easier to manipulate.

Altenkirch et al. [2010] present a calculus on top of which
datatypes can be defined. They focus on the simplicity of the
metatheory rather than the efficiency of the compiled code:
their calculus only offers pairs rather than tuples and has
first class tags instead of our untagged unions. It should be
straightforward to retrofit our labeled tuples and union types
into their calculus while preserving the other properties.

Similarly, Firsov and Stump [2018] shows how to represent
datatypes in a language that only provides dependent inter-
sections instead. They share our goal to define datatypes on
top of simpler constructs, but they focus on the simplicity
of the primitive constructs whereas we are willing to use
more complex constructs in exchange for a straightforward
efficient compilation.

8 Conclusion
We have presented the Calculus of United Constructions,
which is a close cousin of the Calculus of Inductive Construc-
tions, where the inductive type has been carefully split into
its constitutive elements in such a way that those lower-level
elements do not introduce any extra overhead, making it a
good option for an internal representation when compiling
a source language similar to CIC.
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