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Abstract: Generalized Algebraic DataTypes (GADTs) allow programmers to
capture invariants of their data structures through type annotations on data con-
structors. However, when working with GADTs, it is often difficult to concisely
and precisely express the way data manipulations maintain those invariants. One
can use GADTs or multi-parameter type classes to model relations on types, but
the results are not always satisfactory. The recent introduction of open type fam-
ilies in GHC offers an attractive alternative. They are a type system extension by
which functions over types can be defined directly, much like term-level functions,
and appear in type signatures.

We illustrate the use of type families in the context of a type-preserving com-
piler written in Haskell. We compare the results with an ad-hoc solutions that
uses GADTs to encode functions on types. We argue that type families promote
a more direct programming style that eliminates much code bloat and translates
into increased run-time performance. They offer better modularity and require
fewer type annotations than type classes, which require that class constraints be
propagated between compilation phases.

We also describe a use of type families to capture more complex data structure
invariants. We mention current limitations that we face with these more advanced
uses, in which we need to convince the type checker that the type families we
define satisfy certain properties. We sketch a proposal of a language extension to
directly support such properties.
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4.1 INTRODUCTION

There is a definite trend in richly typed functional languages to incorporate fea-
tures from dependently typed languages and proof assistants. In the world of
Haskell, an important step in this direction has been the introduction of General-
ized Algebraic Datatypes (GADTs) in GHC. GADTs can be seen as a restricted
form of dependent types, where the stage-distinction between terms and types
is not lost. They allow data constructors to bear extra type annotations that can
describe the shape, size, content, or other properties of the data. These annota-
tions can be used to express key invariants of the data structures, and thus rule out
invalid uses of the data.

Even before GADTs were around, the rich type system of Haskell and its
proposed extensions lent itself to simulating dependent typing. Typically this
could be done with sophisticated uses of type classes (as in [4]), or even plain
old parametric polymorphism (as in [12]). But as GADTs extend the basic notion
of data declaration at the core of the language, they promise to support a sort of
dependent programming in a more direct manner. But while GADTs constrain the
data that can be constructed, they do not naturally lend themselves to impose some
relationship between different chunks of data, e.g. to state that the list returned
by a filter function is shorter than its argument. Multi-parameter type classes can
sometimes serve that purpose, although the results are often contrived and difficult
to understand. Alternatively, as GADTs can essentially encode relations on types,
they can be used as runtime proofs of relations on the types of the inputs and
outputs of a function. While this approach is flexible, it tends to be rather verbose
and incurs run-time overhead.

There has recently been a proposal to extend Haskell with functions over
types, or so-called type families [17, 16]. They allow the programmer to define
functions over types by case analysis, and refer to these functions in the signa-
tures of functions (or data constructors.) This development had been introduced
in GHC and we could thus experiment with those new tools. Our experience
has generally been that precise relationships between types can be expressed suc-
cinctly and precisely, while achieving the same effect using other techniques re-
quires rather more indirect and elaborate encodings.

Type families are a generalization of associated types [3], in the sense that they
can be defined independently of type classes. The question whether associated
types or the alternative approach of multi-parameter type classes with functional
dependencies [10], should make it to the next Haskell standard [15], is one of
the most hotly debated issues in the standardization effort. This motivated us to
document our experience and take a position in favor of type families.

4.1.1 Context

We have been using GADTs extensively in the context of a type-preserving com-
piler for a functional language [7, 8]. The primary use we make of GADTs is
to encode program representations of our source and intermediate languages, in
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data ValK t where
LamK :: (ValK t→ ExpK)→ ValK (t→ Void)
PairK :: ValK s→ ValK t→ ValK (s, t)

data ExpK where
AppK :: ValK (t→ Void)→ ValK t→ ExpK

data Void

FIGURE 4.1. Encoding of the CPS language

a way that enforces each language’s type system. As a starting point, the simply
typed λ -calculus can be encoded as:

data Exp t where
Lam :: (Exp s→ Exp t)→ Exp (s→ t)
App :: Exp (s→ t)→ Exp s→ Exp t

In contrast to an ordinary algebraic datatype, a GADT definition can have data
constructors of varying type. Here, the type Exp has a type parameter t that re-
flects the source type of the expression: a Haskell term of type Exp t encodes an
expression of source type τ , where t is the Haskell type we use to reflect τ . We
can also view Exp as an encoding of type derivations rather than just expressions,
as type derivations are in one-to-one correspondence with well-typed expressions.

The tricky part is to give a type to a function that implements a transformation
over Exp. We will take the example of the CPS conversion, as its theory is well
understood (see e.g. [2, 14]). At first approximation, its type would be:

cps :: Exp t→ (ValK t ′→ ExpK)→ ExpK

where ValK t is a value in CPS of type t and ExpK is a well-formed CPS ex-
pression; the two datatypes are defined in Fig. 4.1. The second argument to cps
is an expression parameterized by a value of object type t ′, consistent with the
source type t; it abstracts the context which will consume the value produced by
the evaluation of the original expression.

The relationship between t and t ′ is captured by a function mapping source
types to types in CPS:

K Jτ1→ τ2K = (K Jτ1K,K Jτ2K→ void)→ void

In CPS, functions do not return to the caller, so they do not have a return type,
and they are called continuations. The type of a continuation expecting type τ is
denoted τ→ void. As an example, the identity function on integers, λx . x of type
int→ int, is converted to a function λ 〈x,k〉 . k x of type 〈int, int→ void〉→ void.

In the sections that follow, we will see different implementations of cps using
different types. We will focus on the rule that CPS-converts a function application:

KexpJe1 e2K k = KexpJe1K (λv1. KexpJe2K (λv2. v1 〈v2,k〉))
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Restricting to the case of function application rather than function abstraction
relieves us from the intricacies of dealing with binders, so as to better focus on
type issues.

Outline The rest of this paper is structured as follows. We first introduce type
families and implement the function cps using these (Sec. 4.2). We then consider
an alternative solution that uses only GADTs (Sec. 4.3), and one that uses type
classes (Sec. 4.4). We describe a more advanced use of type families for encoding
more sophisticated typed languages and the some limitations thereof (Sec. 4.5),
and sketch a proposal to address these limitations (Sec. 4.6).

4.2 TYPE FAMILIES

Type families allow us to directly define functions over types by case analysis, in
a way that resembles term-level function definitions with pattern matching. For
example, we can define a type function Add that computes (statically) the sum of
two Peano numbers:

data Z; data S i — natural numbers encoded as types

type family Add n m
type instance Add Z m = m
type instance Add (S n) m = S (Add n m)

We can then use this type family to express the fact that an append function over
length-annotated lists produces a list of the expected length:

data List elem len where
Cons :: elem→ List elem n→ List elem (S n)
Nil :: List elem Z

append :: List elem n→ List elem m→ List elem (Add n m)
append Nil l = l
append (Cons h t) l = Cons h (append t l)

To see how the first clause of append type-checks: by the type signature of
append, the right-hand-side should have type List elem (Add Z m); l actually
has type List elem m, which is the same, since Add Z m reduces to m by the defi-
nition of Add. For the second clause, the type signature of append requires that the
right-hand-side have type List elem (Add (S n) m); actually Cons h (append t l)
has type List elem S (Add n m), which is the same after the second clause of Add
is applied, in reverse.

We can define K J−K similarly:

type family CPS t
type instance CPS (s→ t) = ((CPS s,CPS t→ Void)→ Void

and we can refer to it in the type of cps:
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data CPS t t ′ where
CpsFun :: CPS s s′→ CPS t t ′

→ CPS (s→ t) ((s′, t ′→ Void)→ Void)

data CPSterm t where
CPSterm :: CPS t t ′→ ((ValK t ′→ ExpK)→ ExpK)→ CPSterm t

cps :: Exp t→ CPSterm t
cps (App e1 e2) =

case cps e1 of
CPSterm (CpsFun ss′ tt ′) e′1→

case cps e2 of
CPSterm ss′2 e′2→

case cpsUnique ss′ ss′2 of
EqRefl→ CPSterm tt ′ (λk→ e1 (λv1→ e2 (λv2→

AppK v1 (PairK v2 (LamK k)))))

data Equal a b where
EqRefl :: Equal a a

cpsUnique :: CPS t t ′→ CPS t t ′′→ Equal t ′ t ′′

cpsUnique = . . .

FIGURE 4.2. All-GADT CPS conversion

cps :: Exp t→ (ValK (CPS t)→ ExpK)→ ExpK

We can then implement cps in the most straightforward way and have the type-
checker verify that the constraints on object types are respected:

cps (App e1 e2) k =
cps e1 (λv1→

cps e2 (λv2→
AppK v1 (PairK v2 (LamK k))))

In this example we get GHC’s type checker to verify that our CPS conversion is
type preserving, for free: were we to use a plain algebraic datatype instead of
a GADT and not bother to enforce type preservation, the code of cps would be
identical.

4.3 MORE GADTS

In the days when type families were not available, a workable solution (which we
did use extensively) was to encode the type function K J−K as relation using a
GADT, and have cps produce an existential package containing a proof that the
output term expected a continuation of suitable type. The type of cps then looks
like:
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cps :: Exp t→ (∃t ′. (CPS t t ′,(ValK t ′→ ExpK)→ ExpK))

A term of type CPS t t ′ encodes a proof that K JτK = τ ′, where t encodes τ and
t ′ encodes τ ′. The above signature for cps actually abuses Haskell notation: in
reality we need to introduce another GADT (CPSterm t) to bind an existential
type and couple the term with the proof that it is of the expected type. The actual
implementation is shown in Fig. 4.2.

As K J−K is encoded as a relation, we need a separate proof that this relation
is a function. This is accomplished by the cpsUnique function, which produces a
witness that τ ′= τ ′′, given proofs that K JτK = τ ′ and K JτK = τ ′′; such witnesses
are encoded with the type equality GADT, Equal. We call this function when
converting a function application to ensure that the function and its argument are
of compatible type.

In comparison to our initial solution with type families, the one shown here is
unsatisfactory:

• It is cluttered with manipulations of existential packages. As a result, the code
doing the translation roughly doubles in size.

• It requires a number of additional artifacts, such as the type CPSterm and the
function cpsUnique.

• Constructing and inspecting the existential packages incurs run-time overhead.

• The “proofs” that the types match are encoded in an unsound logic: a proof
term could be set to undefined, or its evaluation could run into an infinite loop.
The type system guarantees that the constructed proof terms are well-formed,
but Haskell does not provide a way to statically verify that the proof terms are
properly constructed. Such proofs can be checked at runtime instead, with the
obvious runtime cost, but even then, it can be difficult to convince oneself that
the runtime checks are complete.

4.4 TYPE CLASSES

Type classes are meant to support ad-hoc polymorphism: they allow the program-
mer to define functions that behave differently at different types. It is not imme-
diately clear that this feature can be useful in our case: after all, cps proceeds by
case analysis over the syntactic constructs, not the types. But there may be some
indirect use of type classes by which we can express the way our syntax-directed
translation produces terms of the expected type.

Multi-parameter type classes with functional dependencies allow us to define
some form of intentional type functions. For example, we can express the type
function K J−K as follows:

class CPS t t ′ | t→ t ′

instance (CPS s s′,CPS t t ′)⇒ CPS (s→ t) ((s′, t ′→ Void)→ Void)
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The first line declares a type class CPS as a relation between two parameters t and
t ′, and states that t ′ is uniquely determined by t, so in effect we have a function
from t to t ′. The second line defines the function at s→ t. For type classes to
be useful, they are normally equipped with member functions. We might try to
define cps in this way:

class CPS t t ′ | t→ t ′

where cps :: Exp t→ (ValK t ′→ ExpK)→ ExpK

Individual instance declarations are required to implement the member functions
for the types they cover, for example:

instance (CPS s s′,CPS t t ′)⇒ CPS (s→ t) ((s′, t ′→ Void)→ Void)
where cps = . . .

This example would give the translation for λ -abstractions. We would define
other instances and implement cps for other introduction forms if we had any.
But we cannot do the same for elimination forms, as they are not identified with
source types of a particular form. For example, we cannot say in general of what
form the type of a function application e1 e2 will be, as it depends on the return
type of e1.

One thing we can do is define the function cps separately from the class CPS
and have it handle all the syntactic forms:

cps :: CPS t t ′⇒ Exp t→ (ValK t ′→ ExpK)→ ExpK
cps (App e1 e2) k =

cps e1 (λv1→
cps e2 (λv2→
AppK v1 (PairK v2 (LamK k))))

For this this to work, the compiler must know that there are instances of CPS that
cover the types of e1 and e2. This forces us to add a class context to the constructor
App:

App :: CPS s s′⇒ Exp (s→ t)→ Exp s→ Exp t

Note that we do not need to mention CPS t t ′ in this context, because the return
type of App is Exp t, and we already have CPS t t ′ in the context of cps.

The problem with these class constraints is that they embed knowledge about
the CPS translation into the source language. So earlier phases get polluted by
constraints that are specific to the later CPS phases. In general these class con-
straints propagate from the CPS conversion phase all the way up to the type
checking or type inference phase, which is the only phase where the types are
sufficiently ground to make it possible to create the corresponding proofs. Of
course, other compilation phases such as closure conversion or hoisting would re-
quire similar class constraints on their data constructors, which would propagate
to the front-end as well. Class inheritance might sometimes be used to combine or
synthesize these. But there is an inherent lack of modularity in this scheme, which
amounts to pre-computing in some previous phase the type-level translation of a
subsequent phase.



IV–8 CHAPTER 4. ONE VOTE FOR TYPE FAMILIES IN HASKELL!

4.5 FURTHER USES OF TYPE FAMILIES

Type families are also useful to capture more complex invariants of data struc-
tures. We constructed an encoding of System F , where a set of type families
implement substitution over System F types. In this section we describe this en-
coding as well as the difficulties we encountered when implementing code trans-
formations over it.

Our representation of System F types encodes type variables (bound by ∀) as
de Bruijn indices. For instance, the type of the swap function for pairs:

∀α,β . 〈α,β 〉 → 〈β ,α〉

would be represented as:

All (All ((Var (S Z),Var Z)→ (Var Z,Var (S Z))))

The data constructor for the intermediate language’s representation of type appli-
cation (e[τ]) is defined as:

data Exp t where
. . .
TpApp :: Exp (All s)→ Exp (Subst s t Z)

where Subst is the type family that implements substitution over types, defined
below. Note that the type t is implicit in this definition. The type of TpApp
encodes the usual typing rule for type application:

Γ ` e : ∀α. τ1

Γ ` e[τ2] : τ1[τ2/α]

With de Bruijn indices, we omit type variables in universal types, and substitution
eliminates an index rather than a type variable, so the above rule would read:

Γ ` e : ∀τ1

Γ ` e[τ2] : τ1[τ2/0]

where 0 is the smallest de Bruijn index. The form τ[τ ′/i] yields the type τ where
the index i has been eliminated, and τ ′ has been substituted in place of it. This
capture-avoiding substitution is formally defined in Fig. 4.3. It is a conventional
substitution over de Bruijn terms (as in, e.g. [11]). When substituting τ in place
of the index i, the free variables of τ must be incremented in order to avoid cap-
ture; this is accomplished by the “update” function U i

k(τ) (sometimes also called
“shift”) whose effect is to adjust all indices no smaller than k (those are the free
variables) by incrementing them by i.

The substitution and update functions encode directly as Haskell type families.
As their definition involve arithmetic over indices, we also need to define type
functions accordingly. The complete list of type functions, with their meaning, is
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(∀τ0)[τ/i] = ∀(τ0[τ/i+1])

j[τ/i] =

 j−1 if j > i
U i

0(τ) if j = i
j if j < i

(τ1→ τ2)[τ/i] = τ1[τ/i]→ τ2[τ/i]
int[τ/i] = int

U i
k(∀τ) = ∀(U i

k+1(τ))

U i
k( j) =

{
j + i if j ≥ k
j if j < k

U i
k(τ1→ τ2) = U i

k(τ1)→U i
k(τ2)

U i
k(int) = int

FIGURE 4.3. Substitution over System F types

as follows:

type family Subst t1 t2 i — τ1[τ2/i] Substitute t2 for i in t1
type family U k i t — U i

k(τ) Add i to indices in t no smaller than k
type family Pred i — i−1 Predecessor of i
type family Add i j — i+ j Sum of i and j

type family CMP i j t1 t2 t3 —

τ1 if i < j;
τ2 if i = j;
τ3 if i > j.

The definition of individual type families is straightforward:

type instance Subst (All s) t i = All (Subst s t (S i))
type instance Subst (Var j) t i = CMP i j (Var (Pred j)) (U Z i t) (Var j)
. . .
type instance U k i (All t) = All (U (S k) i t)
type instance U k i (Var j) = Var (CMP j k j (Add j i) (Add j i))
. . .

4.5.1 Limitations

We were able to extend our CPS conversion (and subsequently the other phases
as well) to work with this representation of polymorphism using type families.
The technical difficulty it introduces is that some work is needed to convince the
type checker that we obtain a well-typed term when converting a type application
(or abstraction), as it involves reconstructing a term whose type is defined by a
substitution. For instance, the translation of a type application is defined as:

KexpJe[τ]K k = KexpJeK (λx . x[K JτK] (λy . k y))

The type safety of this rule relies on the fact that our notion of substitution com-
mutes with the type translation:

Lemma 4.1. (subst-K J−K commute) For all source types τ1, τ2 and index i,

K Jτ1[τ2/i]K = K Jτ1K[K Jτ2K/i].
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To put this in context, it means that we need to make a coercion between the types:

ValK (Subst (CPS s) (CPS t) Z)

and

ValK (CPS (Subst s t Z))

for the supplied continuation (k) to be of a type compatible with the translated
term. To provide this coercion, we have two options: we can add it to the context
as a required type predicate, or implement the lemma as a term-level function.

Lemma in the context We can annotate the data constructor TpApp with a con-
straint stating that the lemma holds for the types in question.

data Exp t where
. . .
TpApp :: CPS (Subst s t Z)∼ Subst (CPS s) (CPS t) Z⇒

Exp (All s)→ Exp (Subst s t Z)

A constraint of the form s ∼ t means that the types s and t, although possibly
syntactically different, are equivalent after applying a process of normalization
(which in particular eliminates applications of type functions.) These type equal-
ity coercions [23] are another feature introduced in GHC along with type families.

We can then implement cps as follows1:

cps (TpApp e) k = cps e (λx→ TpAppK x (LamK k))

This scheme basically moves the burden of proving the property to the point where
the property is trivial to prove because s is known. This means it is propagated
just like type class constraints in Sec. 4.4, and suffers from the same problems: the
proof that Subst and CPS commute ends up being constructed in the front end and
propagated through the compiler pipeline until reaching the CPS phase. Also this
has to be done for every such property we need, and it appears that we generally
cannot combine or synthesize those proofs from each other using something like
class inheritance, so we end up with very large type annotations throughout the
compiler.

Lemma as a function An alternative solution is to implement the lemma as a
term-level function, which produces a witness that the coercion is valid. Its type
is:

substCpsCommute ::
TypeRep s→ TypeRep t→ NatRep i

→ Equiv (CPS (Subst s t i)) (Subst (CPS s) (CPS t) i)

data Equiv s t where
Equiv :: s∼ t⇒ Equiv s t

1Note that type application is implicit in Haskell syntax, hence the difference from the
definition of KexpJ−K .
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The type Equiv reifies a type equality coercion at the term level, and generalizes
the type Equal from Sec. 4.3. The lemma itself (substCpsCommute) can be de-
fined by case analysis over runtime type representations (TypeRep) of the types
s and t. Alternatively, it can do a dynamic test: it can construct a representation
of the two types to prove equal and perform a comparison over them to supply
evidence that they match.

Of course, in order to apply the lemma, we now need type annotations on the
data constructor:

data Exp t where
. . .
TpApp :: TypeRep s→ TypeRep t→ Exp (All s)→ Exp (Subst s t Z)

The implementation of cps is then:

cps (TpApp sr tr e) k =
case substCpsCommute sr tr of

Equiv→ cps e (λx→ TpAppK x (LamK k))

In addition to the type annotations on the syntax, implementing the coercions
such as Lemma 4.1 at the term level has the disadvantage that the lemma itself
is implemented in an unsound logic, and executing the lemma incurs run-time
overhead.

4.5.2 The view from the other sides

Note that if we did not want to use type families, we could still encode type
functions such as CPS and Subst as relations, using either GADTs or type classes,
as we did in Sec. 4.3 and 4.4. For instance, using GADTs to encode substitutions,
the constructor for type application would look like:

data Exp t where
. . .
TpApp :: Subst s t Z t ′→ Exp (All s)→ Exp t ′

or, using type classes:

data Exp t where
. . .
TpApp :: Subst s t Z t ′⇒ Exp (All s)→ Exp t ′

where Subst s t i t ′ would be the relation such as s[t/i] = t ′. This can make for
potentially large type annotations, and suffers from the same inconveniences as
discussed earlier. Especially, a GADT-based encoding would require proofs that
the five relations defined are indeed functions.

In such a situation, the lemma we would need to prove would look like the
following:

CPS s cpss ∧ CPS t cpst ∧ Subst cpss cpst Z cpssubst
⇔ Subst s t Z subst ∧ CPS subst cpssubst
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If the relations are encoded as GADTs, this lemma can be proved straightfor-
wardly by writing the corresponding Haskell function. But it would of course
incur a runtime cost, would need one function for each direction, and would still
suffer from the fact that those proofs are written in an inconsistent logic.

If the relations are encoded as type classes, we apparently just need to move
the constraint into the context for Haskell to prove it for us. Of course, this suf-
fers as before from the fact that those constraints will spread very far and pol-
lute a lot of the code, but this is the least of our problem: the constraints we
need to encode can not always be expressed in the appropriate form, because type
class constraints can only be first order. I.e. we could state a constraint such as
Subst (CPS s) (CPS t) Z = CPS (Subst s t Z) for particular type parameters s and
t, whereas we sometimes need the constraint to hold for all t.

The lemmas proposed in the next section for type families could probably be
extended to apply to type classes as well, in which case they could probably be
used here as well.

4.6 LEMMAS OVER TYPE FAMILIES

The previous section motivates the need for a facility by which some form of rea-
soning about type families could be carried out at the type level, so as to avoid the
pitfalls of run-time checks without having type annotations encumber the whole
compiler.

One difficulty with type families is that they are by definition open, i.e. nothing
prevents a type family from being extended with instances for unforeseen types.
This problem was already recognized in [17] where they point out that they cannot
rely on properties such as Add n Z = n since a new instance of Add may define
Add Int i = Z.

Thus we cannot complete proofs of lemmas that holds for all possible types.
There are two ways to work around this difficulty: close the world, or leave it
open but only to new instances that satisfy the lemma.

Closed world One possible solution is to introduce what we would call datakinds,
which introduce new kinds, along with associated type constructors, much like
datatypes introduce new types with associated data constructors. This is the ap-
proach taken in Omega [21] as well as in most proof assistants such as Coq [6]
and Agda [1]. This would work well for our type-preserving compiler, but would
be a significant departure from GHC’s current type families.

Open world If the world is wide open, our lemma simply does not hold in gen-
eral, so we have no hope of proving it. We have to close the world to some extent
but we can leave it ajar: rather than disallow extending the type family with new
instances altogether, we will simply constrain new instances to obey the lemma(s)
that apply to the type family.
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This idea is somewhat similar to type class inheritance or to functional depen-
dencies of multi-parameter type classes: functional dependencies also restrict the
set of possible instances, so as to make sure that a property is preserved, and type
class inheritance requires every instance to obey the constraints imposed by the
parent.

4.6.1 Syntax

Ideally, we would like to state properties such as Lemma 4.1, and have the type
checker verify that all instances of the relevant families satisfy the property. The
syntax for introducing such lemmas could be as follows:

lemma substCpsCommute : Subst (CPS s) (CPS t) i∼ CPS (Subst s t i)

This declaration would have the effect of introducing a function (of the same
name) which can be used to discharge the constraint expressed by the lemma:

substCpsCommute :: (Subst (CPS s) (CPS t) i∼ CPS (Subst s t i)⇒ a)→ a

That is, the function substCpsCommute can be applied to turn a piece of code
which needs the lemma in its context in order to type-check, into one that does
not need it. Of course, this sort of identity function should be optimized out so as
to have no run-time cost. Resuming our example from Sec. 4.5.1, we could write
cps as:

cps (TpApp e) k = substCpsCommute e′

where e′ :: Subst (CPS s) (CPS t) Z ∼ CPS (Subst s t Z)⇒ ExpK
e′ = cps e (λx→ TpAppK x (LamK k))

or better yet:

cps (TpApp e) k = substCpsCommute cpsTpApp e k
where cpsTpApp :: Subst (CPS s) (CPS t) Z ∼ CPS (Subst s t Z)⇒

Exp (All s)→ (ValK (CPS (All s))→ ExpK)→ ExpK
cpsTpApp e k = cps e (λx→ TpAppK x (LamK k))

where the coercion substCpsCommute cpsTpApp can be lifted outside of the re-
cursion, should it have a run-time cost.

Explicit proofs If fully automatic checking of the lemmas turns out to be im-
practical, we will need to provide explicit proofs along with instance declarations.
If for example we extend CPS and Subst to handle product types, the syntax for
proving that the new instances satisfy the lemma could look as follows:

type instance CPS (a,b) = (CPS a, CPS b)
type instance Subst (a,b) t i = (Subst a t i, Subst b t i)
proof substCpsCommute : CPS (Subst (a,b) t i)
{- reduce -} ∼ (CPS (Subst a t i), CPS (Subst b t i))
{- induction -} ∼ (Subst (CPS a) (CPS t) i, Subst (CPS a) (CPS t) i)
{- reduce -} ∼ Subst (CPS (a,b)) (CPS t) i
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The proof consists of a series of coercions that begins with the left-hand side of
the coercion to prove valid and ends with its right-hand side. Each step of the
proof is justified by either applying a known lemma, or simply because the two
types reduce to the same canonical form.

As shown here, a particular lemma may depend on more than one type family.
Also they will often need to resort to induction. Additionally to checking that the
proof steps are correct, the system will need to verify that the induction, if any,
is well-founded, that the various proof chunks provided do cover all (currently)
possible cases. This last problem can be difficult in the presence of dependent
types [19], but as long as Haskell’s type systems remains itself simply typed, this
should not be major hurdle.

4.7 RELATED WORK

Type classes were proposed in [24] and extended to multiple parameters with
functional dependencies in [10]. GADTs have been proposed several times in one
form or another and under a variety of names, see for example [5, 22, 25]. Some
of those systems, such as Omega [21] provide type level functions similar to type
families except that they are closed. In our case, such type level functions would
work as well as type families. Type families were proposed in [17, 16] and are
related to associated types [3].

Taming the open world assumption has already been done several times in
different contexts. We have already mentioned that the inheritance hierarchy of
type classes imposes constraints on the possible new instances [24]. And similarly
functional dependencies [10], used to restrict the set of instances of some multi-
parameter type classes, to make sure that although the world is open, the unknown
part is constrained to obey the property described by the functional dependencies.

In a different context, Carsten Schürmann [18] uses a regular world assump-
tion to constrain the type environments in LF judgments, so as to circumvent the
difficulties inherent to the non-inductive nature of higher-order abstract syntax.

[20] shows what a CPS translation would look like with the equivalent of type
families in a closed world. [13] presents a more sophisticated set of coercions
where the coercions can be computed by type-level functions, thus allowing to
write proofs of type-equivalence lemmas at the level of types.

The details of our experience writing a type preserving compiler in Haskell
can be found in [7, 8, 9].

4.8 CONCLUSION

Results We have updated every phase of the compiler (CPS conversion, closure
conversion, a function hoisting phase, and a conversion from higher-order abstract
syntax to de Bruijn indices) to use type families instead of GADTs in the way
illustrated here, and the results have been largely positive, cutting down on code
size drastically and improving performance significantly. The shift to using type
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families in place of type functions encoded with GADTs did not introduce any
new difficulties.

For the purpose of the comparison, we assembled two versions of the CPS
conversion over a simply typed language (with integers, pairs and recursion), one
using proof witnesses encoded as GADTs, and one using type functions. The use
of type functions resulted in a speedup of an order of magnitude, in fact speeding
up by a factor of 30 when compiled with GHC version 6.8.2. Although this com-
parison is anecdotal in nature, it clearly shows that the run-time cost of checking
proofs is significant. The size of the code implementing the transformation also
dropped by roughly 40%.
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Source code The source code used for the comparison is available from the
author’s web page:

http://www-etud.iro.umontreal.ca/˜guillelj/cps-tf/
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