Simplex algorithm for problems with bounded variables

• Consider the linear programming problem with bounded variables

$$\begin{array}{ll} \min \ c^{\mathrm{T}}g\\ \mathrm{s.t.} & Ag = h\\ l_{j} \leq g_{j} \leq q_{j} & j = 1, 2, ..., n \end{array}$$

where $g, c, l, q \in \mathbb{R}^n$, $h \in \mathbb{R}^m$, and A is a $m \times n$ matrix

• Complete the following change of variables to reduce the lower bound to 0

$$x_j = g_j - l_j$$
 (i.e., $g_j = x_j + l_j$)

the problem becomes

min $c^{\mathrm{T}}(x+l)$ s.t. A(x+l) = h $l_j \le x_j + l_j \le q_j$ j = 1, 2, ..., n

 $\begin{array}{ll} \min \ c^{\mathrm{T}}g\\ \mathrm{s.t.} & Ag = h\\ l_{j} \leq g_{j} \leq q_{j} & j = 1, 2, ..., n \end{array}$

where $c, x, l, q \in \mathbb{R}^n$, $h \in \mathbb{R}^m$, and A is a $m \times n$ matrix

• Complete the following change of variables to reduce the lower bound to 0

$$x_j = g_j - l_j$$
 (i.e., $g_j = x_j + l_j$)

the problem becomes

min
$$c^{\mathrm{T}}(x+l)$$

s.t. $A(x+l) = h$
 $l_j \le x_j + l_j \le q_j$ $j = 1, 2, ..., n$

where $c, x, l, q \in \mathbb{R}^n$, $h \in \mathbb{R}^m$, and A is a $m \times n$ matrix

$$\min c^{\mathrm{T}}x + c^{\mathrm{T}}l$$
s.t. $Ax = \underline{h - Al}$
 $l_j - l_j \leq x_j + l_j - l_j \leq \underline{q_j - l_j} \quad j = 1, 2, ..., n$

$$\text{replacing}: u_j = q_j - l_j \text{ and } \quad b = h - Al$$

$$\min c^{\mathrm{T}}x + c^{\mathrm{T}}l$$
s.t. $Ax = b$
 $0 \leq x_j \leq u_j \quad j = 1, 2, ..., n$

• In this problem

$$\begin{array}{ll} \min \ c^{\mathrm{T}}x\\ \mathrm{s.t.} \quad Ax = b\\ 0 \le x_{j} \le u_{j} \qquad j = 1, 2, ..., n \end{array}$$

since $c^{T}l$ is a constant, we can eliminate it from the minimisation without modifying the optimal solution.

Then in the rest of the presentation we consider the problem without this constant.

$$\begin{array}{ll} \min \ c^{\mathrm{T}} x \\ \mathrm{s.t.} & Ax = b \\ 0 \le x_{j} \le u_{j} \qquad j = 1, 2, ..., n \end{array}$$

• Consider the explicit formulation of the problem

$$\min z \neq \sum_{j=1}^{n} \sum_{j=1}^{n} x_{jj} x_{j}$$
s.s.t.
$$\sum_{j=1}^{n} \sum_{j=1}^{n} x_{jj} \neq p_{i} \quad \neq b_{i} 1, 2, ..., n$$

$$0 \leq x_{j} \leq u_{j} = u_{j} = 1, 2j = h, 2, ..., n$$

$$x_{j}, y_{j} \geq 0 \qquad j = 1, 2, ..., n$$

• One way of solving the problem is to introduce slack variables y_j , and then use the simplex algorithm.

min $z = \sum_{j=1}^{n} c_j x_j$ s.t. $\sum_{j=1}^{n} a_{ij} x_j = b_i$ i = 1, 2, ..., m $x_j + y_j = u_j$ j = 1, 2, ..., n $x_j, y_j \ge 0$ j = 1, 2, ..., n

min
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j = b_i$ $i = 1, 2, ..., m$
 $0 \le x_j$: $j = 1, 2, ..., n$
account implicitly

min
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j = b_i$ $i = 1, 2, ..., m$
 $x_j + y_j = u_j$ $j = 1, 2, ..., n$
 $x_j, y_j \ge 0$ $j = 1, 2, ..., n$
Non degeneracy:
all the basic variables
are positive at
each iteration

- Consider a basic feasible solution of this problem
- Because of the constraints $x_j + y_j = u_j$, at least one of the variables x_j or y_j is basic, j = 1, 2, ..., n.
- Then for all j = 1, 2, ..., n, one of the three situations holds:
 - a) $x_i = u_i$ is basic and $y_i = 0$ is non basic
 - b) $x_i = 0$ is non basic and $y_i = u_i$ is basic
 - c) $0 < x_j < u_j$ is basic and $0 < y_j < u_j$ is basic

a) x_j basic; y_j non basic b) x_j non basic; y_j basic c) x_j basic; y_j basic

a)
$$x_j$$
 basic; y_j non basic
b) x_j non basic; y_j basic
c) x_j basic; y_j basic

Exactly *m* variables x_i satisfying $0 < x_j < u_j.$ For contradiction, if $m^0 \neq m$ variables x_i satisfy the relation, then the m^0 corresponding variables y_i would be basic. Furthermore, for the $n - m^0$ other indices *j*, either $x_i = u_i$ (case a) or $y_i = u_i$ (case b) would be verified. Then the number of basic variables would be equal to $2m^0 + (n - m^0) = m^0 + n \neq m + n$

min
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{i=1}^{n} a_{ij} x_j = b_i$ $i = 1, 2, ..., m$
 $x_j + y_j = u_j$ $j = 1, 2, ..., n$
 $x_j, y_j \ge 0$ $j = 1, 2, ..., n$

$$\min z = c^{T}x$$

s.t.
$$Ax + 0y = b$$
$$Ix + Iy = u$$
$$x, y \ge 0$$
$$\begin{bmatrix} A & 0\\I & I \end{bmatrix}$$

To simplify notation, assume the following basic variables: $0 < x_i < u_i$ i = 1,...,m $0 < y_i < u_i$ i = 1,...,m $x_i = u_i$ i = m + 1,...,m + l $y_i = u_i$ i = m + l + 1,...,m + n

$$\Xi = \begin{bmatrix} B_1 & 0 & D_1 & 0 \\ I_1 & I_1 & 0 & 0 \\ 0 & 0 & I_2 & 0 \\ 0 & 0 & 0 & I_3 \end{bmatrix}$$

$$\Xi = \begin{bmatrix} B & 0 & D & 0 \\ I_1 & I_1 & 0 & 0 \\ 0 & 0 & I_2 & 0 \\ 0 & 0 & 0 & I_3 \end{bmatrix}$$
$$= \begin{bmatrix} B & 0 & D & 0 \\ I_1 \\ 0 & I \\ 0 \end{bmatrix}$$

$$\Xi = \begin{bmatrix} B & 0 & D & 0 \\ I_1 & I_1 & 0 & 0 \\ 0 & 0 & I_2 & 0 \\ 0 & 0 & 0 & I_3 \end{bmatrix}$$
$$= \begin{bmatrix} B & 0 & D & 0 \\ I_1 \\ 0 & I \\ 0 \end{bmatrix}$$

$$det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
$$= d \left(a - bd^{-1}c \right)$$

$$\Xi = \begin{bmatrix} B_{-} & 0 & D & 0 \\ I_{1} & I_{1} & 0 & 0 \\ 0 & 0 & I_{2} & 0 \\ 0 & 0 & 0 & I_{3} \end{bmatrix}$$
$$= \begin{bmatrix} B & 0 & D & 0 \\ I_{1} & & \\ 0 & I & \\ 0 & & \end{bmatrix}$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
$$= d \left(a - bd^{-1}c \right)$$

$$\det (\Xi) = \det (I) \left\{ \det (B) - \det \left(\begin{bmatrix} 0 \ D \ 0 \end{bmatrix} I^{-1} \begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix} \right) \right\}$$
$$= \det (I) \left\{ \det (B) - \det (\tilde{0}) \right\}$$
where the matrix $\tilde{0}$ is $m \times m$ since
$$\begin{bmatrix} 0 \ D \ 0 \end{bmatrix}$$
is a $m \times n$ matrix and
$$\begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix}$$
is a $n \times m$ matrix

$$\Xi = \begin{bmatrix} B_{-} 0 \cdot D \cdot 0 \\ I_{1} & I_{1} & 0 & 0 \\ 0 & 0 & I_{2} & 0 \\ 0 & 0 & 0 & I_{3} \end{bmatrix}$$
$$= \begin{bmatrix} B & 0 & D & 0 \\ I_{1} & & \\ 0 & I & \\ 0 & & \end{bmatrix}$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
$$= d \left(a - bd^{-1}c \right)$$

$$\det(\Xi) = \det(I) \left\{ \det(B) - \det\left(\begin{bmatrix} 0 \ D \ 0 \end{bmatrix} I^{-1} \begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix} \right) \right\}$$
$$= \det(I) \left\{ \det(B) - \det(\tilde{0}) \right\}$$
where the matrix $\tilde{0}$ is $m \times m$ since
$$\begin{bmatrix} 0 \ D \ 0 \end{bmatrix}$$
 is a $m \times n$ matrix and
$$\begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix}$$
 is a $n \times m$ matrix

Then $det(\Xi) = det(I)det(B).$

$$\Xi = \begin{bmatrix} B_{-} 0 \cdot D \cdot 0 \\ I_{1} & I_{1} & 0 & 0 \\ 0 & 0 & I_{2} & 0 \\ 0 & 0 & 0 & I_{3} \end{bmatrix}$$
$$= \begin{bmatrix} B & 0 & D & 0 \\ I_{1} & & \\ 0 & I & \\ 0 & & \end{bmatrix}$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
$$= d \left(a - bd^{-1}c \right)$$

$$\det(\Xi) = \det(I) \left\{ \det(B) - \det\left(\begin{bmatrix} 0 \ D \ 0 \end{bmatrix} I^{-1} \begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix} \right) \right\}$$
$$= \det(I) \left\{ \det(B) - \det(\tilde{0}) \right\}$$
where the matrix $\tilde{0}$ is $m \times m$ since
$$\begin{bmatrix} 0 \ D \ 0 \end{bmatrix}$$
is a $m \times n$ matrix and
$$\begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix}$$
is a $n \times m$ matrix

Then $det(\Xi) = det(I)det(B)$. Since Ξ is a basis, then $det(\Xi) \neq 0$. Consequently $det(B) = det(\Xi) \neq 0$ and then *B* is non singular.

$$\Xi = \begin{bmatrix} B_{-} 0 \cdot D \cdot 0 \\ I_{1} & I_{1} & 0 & 0 \\ 0 & 0 & I_{2} & 0 \\ 0 & 0 & 0 & I_{3} \end{bmatrix}$$
$$= \begin{bmatrix} B & 0 & D & 0 \\ I_{1} & & \\ 0 & I & \\ 0 & & \end{bmatrix}$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
$$= d \left(a - bd^{-1}c \right)$$

$$\det (\Xi) = \det (I) \left\{ \det (B) - \det \left(\begin{bmatrix} 0 \ D \ 0 \end{bmatrix} I^{-1} \begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix} \right) \right\}$$
$$= \det (I) \left\{ \det (B) - \det (\tilde{0}) \right\}$$
where the matrix $\tilde{0}$ is $m \times m$ since
$$\begin{bmatrix} 0 \ D \ 0 \end{bmatrix}$$
is a $m \times n$ matrix and
$$\begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix}$$
is a $n \times m$ matrix

Then $det(\Xi) = det(I)det(B)$. Since Ξ is a basis, then $det(\Xi) \neq 0$. Consequently $det(B) = det(\Xi) \neq 0$ and then *B* is non singular. Then *B* is a basis of *A*. The basis has the following form

• Then, we can specify a variant of the simplex method to solve this problem specifically:

min
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j = b_i$ $i = 1, 2, ..., m$
 $0 \le x_j \le u_j$ $j = 1, 2, ..., n$

by dealing implicitly with the upper bound u_j . At each iteration, we consider a solution (basic) associated with a basis *B* de *A* having

m basic variables $0 < x_j < u_j$ $j \in IB$ n-m non basic variables $x_j = 0$ ou u_j $j \in JB$

min
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j = b_i$ $i = 1, 2, ..., m$
 $x_j + y_j = u_j$ $j = 1, 2, ..., n$
 $x_j, y_j \ge 0$ $j = 1, 2, ..., n$

• At each iteration, we consider a solution (basic) associated with a basis *B* de *A* having

m basic variables $0 < x_j < u_j$ $j \in IB$ n-m non basic variables $x_j = 0$ or u_j $j \in JB$

• Denote the indices of the basic variables $IB = \{j_1, j_2, ..., j_m\}$ where j_i is the index of the basic variable in the i^{th} row, then

$$x_{j} = 0 \quad \text{ou} \quad u_{j} \qquad j \in JB$$
$$x_{j_{i}} = \overline{b}_{i} \boxed{-\sum_{j \in JB} \overline{a}_{ij} x_{j}} \qquad i = 1, 2, ..., m$$

Dependent		m .
variables	$x_1 \ x_2 \cdots x_r \cdots x_m \ x_{m+1} \ \cdots x_s \ \cdots x_n \ -z$	r.h.s.
<i>x</i> ₁	1 $\overline{a_{1m+1}} \cdots \overline{a_{1s}} \cdots \overline{a_{1n}}$	\overline{b}_1
x2	1 $\overline{a}_{2m+1}\cdots\overline{a}_{2s}\cdots\overline{a}_{2n}$	\overline{b}_2
:		÷
х,	1 $\overline{a}_{rm+1}\cdots\overline{a}_{rs}\cdots\overline{a}_{rn}$	b,
:		:
x _m	$1 \overline{a}_{mm+1} \cdots \overline{a}_{ms} \cdots \overline{a}_{mn}$	\bar{b}_m
- z	$\overline{c}_{m+1} \cdots \overline{c}_s \cdots \overline{c}_n = 1$	ī

We find similar values as in problems where there are no upper bounds, except for non basic variables $x_j = 0$ or u_j $j \in JB$ We find similar values as in problems where there are no upper bounds, except for non basic variables $x_j = 0$ or u_j $j \in JB$

We have to modify the entering criterion and the leaving criterion accordingly to generate a variant of the simplex algorithm for this problem

Step 1: Selecting the entering variable

The criterion to select the entering variable must be modified to account for the non basic variables x_j being equal to their upper bounds u_j since these variables can be reduced.

Hence, for an index $j \in JB$

if $x_j = 0$ and $\overline{c_j} < 0$, it is interesting to increase x_j if $x_j = u_j$ and $\overline{c_j} > 0$, it is interesting to decrease x_j

Determine
$$\overline{c}_{s_1} = \min_{j \in JB} \{ \overline{c}_j : x_j = 0 \}$$
 and $\overline{c}_{s_2} = \max_{j \in JB} \{ \overline{c}_j : x_j = u_j \}$
Let $\overline{c}_s = \min\{\overline{c}_{s_1}, -\overline{c}_{s_2}\}$ $\left(\max\{|\overline{c}_{s_1}|, |\overline{c}_{s_2}|\} \right)$

If $c_s \ge 0$, then the solution is optimal, and the algorithm stops.

If $\overline{c_s} < 0$ and $\overline{c_s} = \overline{c_{s_1}}$, then the non basic variable x_s increases, and go to Step 2.1. If $\overline{c_s} < 0$ et $\overline{c_s} < \overline{c_{s_1}}$, then the non basic variable x_s decreases, and go to Step 2.2.

- The increase θ of the entering variable x_s is stop by the first of the following three situations happening:
 - i) x_s reach its upper bound u_s -
 - ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} > 0$)
 - iii) a basic variable x_{j_r}
 - increases to reach its upper bound u_{j_r} (in ths case

$$\overline{a}_{rs} < 0)$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (0 + \theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (0 + \theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (0 + \theta) \le u_{j_m}$$

$$x_s = 0 + \theta \le u_s$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{a_{is}} : a_{is} > 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{-a_{is}} : a_{is} < 0\right\}\right\}$$

For all *i* such that $\overline{a}_{is} > 0$, then x_{j_i} decreases when x_s increases of the value θ . It follows $x_{j_i} = g_i - \overline{a}_{is} \theta \ge 0 \iff \overline{a}_{is} \theta \le g_i$ $\Leftrightarrow \theta \le \frac{g_i}{\overline{a}_{is}}$. Then $\theta \le \min_{1 \le i \le m} \left\{ \frac{g_i}{\overline{a}_{is}} : \overline{a}_{is} > 0 \right\}$

• The increase
$$\theta$$
 of the entering
variable x_s is stop by the first of
the following three situations
happening:

i) x_s reach its upper bound u_s

- ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} > 0$)
- iii) a basic variable x_{j_r}

increases to reach its upper bound u_{j_r} (in ths case

$$\overline{a}_{rs} < 0)$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (0 + \theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (0 + \theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (0 + \theta) \le u_{j_m}$$

$$x_r = 0 + \theta \le u_r$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{a_{is}} : a_{is} > 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{-a_{is}} : a_{is} < 0\right\}\right\}$$

For all *i* such that $\overline{a}_{is} < 0$, then x_{j_i} increases when x_s increases of the value θ . It follows $x_{j_i} = g_i - \overline{a}_{is}\theta \le u_{j_i} \iff -\overline{a}_{is}\theta \le u_{j_i} - g_i$ $\Leftrightarrow \theta \le \frac{u_{j_i} - g_i}{-\overline{a}_{is}}$. Then $\theta \le \min_{1 \le i \le m} \left\{ \frac{u_{j_i} - g_i}{-\overline{a}_{is}} : \overline{a}_{is} < 0 \right\}$

- The increase θ of the entering variable x_s is stop by the first of the following three situations happening:
 - i) x_s reach its upper bound u_s
 - ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} > 0$)
 - iii) a basic variable x_{j_r}
 - increases to reach its upper
 - bound u_{j_r} (in the case

$$\overline{a}_{rs} < 0)$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (0 + \theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (0 + \theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (0 + \theta) \le u_{j_m}$$

$$x_s = 0 + \theta \le u_s$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{a_{is}} - a_{is} > 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{a_{is}} - a_{is} < 0\right\}\right\}$$

If $\theta = \infty$, then the problem is not bounded from below, and the algorithm stops.

• The increase θ of the entering variable x_s is stop by the first of the following three situations happening:

i) x_s reach its upper bound u_s -

- ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} > 0$)
- iii) a basic variable x_{j_r}

increases to reach its upper

bound u_{j_r} (in the case

$$\overline{a}_{rs} < 0)$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (0 + \theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (0 + \theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (0 + \theta) \le u_{j_m}$$

$$x_s = 0 + \theta \le u_s$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{a_{is}} - a_{is} > 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{a_{is}} - a_{is} < 0\right\}\right\}$$

If $x_s = u_s$, then the set of basic variables is not modified, and the same basis is used at the next iteration. the variable x_s remains non basic but its value is modified from 0 to u_s . Go to step 1.

- The increase θ of the entering variable x_s is stop by the first of the following three situations happening:
 - i) x_s reach its upper bound u_s
 - ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} > 0$)
 - iii) a basic variable x_{j_r}
 - increases to reach its upper
 - bound u_{j_r} (in the case

$$\overline{a}_{rs} < 0)$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (0 + \theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (0 + \theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (0 + \theta) \le u_{j_m}$$

$$x_s = 0 + \theta \le u_s$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{a_{is}} : a_{is} > 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{-a_{is}} : a_{is} < 0\right\}\right\}$$

If
$$\theta = \frac{g_r}{\overline{a}_{rs}} = \min_{1 \le i \le m} \left\{ \frac{g_i}{\overline{a}_{is}} : \overline{a}_{is} > 0 \right\},$$

then the value on the entretring variable x_s increases to θ . The entering variable x_s becomes a basic variable replacing the leaving variable x_{j_r} becoming a non basic variable equal to 0 Pivot on a_{j_rs} , and go to step 1.

- The increase θ of the entering variable x_s is stop by the first of the following three situations happening:
 - i) x_s reach its upper bound u_s
 - ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} > 0$)
 - iii) a basic variable x_{j_r}
 - increases to reach its upper
 - bound u_{j_r} (in the case

$$\overline{a}_{rs} < 0)$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (0 + \theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (0 + \theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (0 + \theta) \le u_{j_m}$$

$$x_s = 0 + \theta \le u_s$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{a_{is}} : a_{is} > 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{-a_{is}} : a_{is} < 0\right\}\right\}$$

If
$$\theta = \frac{u_{j_r} - g_r}{-\overline{a}_{rs}} = \min_{1 \le i \le m} \left\{ \frac{u_{j_i} - g_i}{-\overline{a}_{is}} : \overline{a}_{is} < 0 \right\},$$

then the value on the entretring variable x_s increases to θ . The entering variable x_s becomes a basic

variable replacing the leaving variable x_{j_r} becoming a non basic variable equal to u_{j_r} Pivot on a_{j_rs} , and go to step 1.

Step 1: Selecting the entering variable

The criterion to select the entering variable must be modified to account for the non basic variables x_j being equal to their upper bounds u_j since these variables can be reduced.

Hence, for an index $j \in JB$

if $x_j = 0$ and $\overline{c_j} < 0$, it is interesting to increase x_j if $x_j = u_j$ and $\overline{c_j} > 0$, it is interesting to decrease x_j

Determine
$$\overline{c}_{s_1} = \min_{j \in JB} \{ \overline{c}_j : x_j = 0 \}$$
 and $\overline{c}_{s_2} = \max_{j \in JB} \{ \overline{c}_j : x_j = u_j \}$
Let $\overline{c}_s = \min\{\overline{c}_{s_1}, -\overline{c}_{s_2}\}$ $\left(\max\{|\overline{c}_{s_1}|, |\overline{c}_{s_2}|\} \right)$

If $c_s \ge 0$, then the solution is optimal, and the algorithm stops.

If $\overline{c_s} < 0$ and $\overline{c_s} = \overline{c_{s_1}}$, then the non basic variable x_s increases, and go to Step 2.1. If $\overline{c_s} < 0$ et $\overline{c_s} < \overline{c_{s_1}}$, then the non basic variable x_s decreases, and go to Step 2.2.

• The decrease θ of the entering variable x_s is stop by the first of the following three situations happening:

i) x_s reduces to 0

- ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a_{rs}} < 0$)
- iii) a basic variable x_{j_r}

increases to reach its upper bound u_{j_r} (in this case

$$\overline{a}_{rs} > 0)$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (-\theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (-\theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (-\theta) \le u_{j_m}$$

$$x_s = u_s - \theta \ge 0$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m} \left\{\frac{g_{i}}{-a_{is}} : a_{is} < 0\right\}, \min_{1 \le i \le m} \left\{\frac{u_{j_{i}} - g_{i}}{a_{is}} : a_{is} > 0\right\}\right\}$$

For all *i* such that $\overline{a}_{is} < 0$, then x_{ji} decreases when x_s decreases of the value θ . It follows $x_{ji} = g_i - \overline{a}_{is} (-\theta) \ge 0 \Leftrightarrow -\overline{a}_{is} \theta \le g_i$ $\Leftrightarrow \theta \le \frac{g_i}{-\overline{a}_{is}}.$ Then $\theta \le \min_{1 \le i \le m} \left\{ \frac{g_i}{-\overline{a}_{is}} : \overline{a}_{is} < 0 \right\}$

• The decrease
$$\theta$$
 of the entering
variable x_s is stop by the first of
the following three situations
happening:

i) x_s reduces to 0

- ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} < 0$)
- iii) a basic variable x_{j_r}

increases to reach its upper bound u_{j_r} (in the case

$$\overline{a}_{rs} > 0$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (-\theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (-\theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (-\theta) \le u_{j_m}$$

$$x_s = u_s - \theta \ge 0$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{-a_{is}} : a_{is} < 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{a_{is}} : a_{is} > 0\right\}\right\}$$

For all *i* such that $\overline{a}_{is} > 0$, then x_{j_i} increases when x_s decreasess of the value θ . It follows $x_{j_i} = g_i - \overline{a}_{is} (-\theta) \le u_{j_i} \iff \overline{a}_{is} \theta \le u_{j_i} - g_i$ $\iff \theta \le \frac{u_{j_i} - g_i}{\overline{a}_{is}}$. Then $\theta \le \min_{1 \le i \le m} \left\{ \frac{u_{j_i} - g_i}{\overline{a}_{is}} : \overline{a}_{is} > 0 \right\}$

• The decrease θ of the entering variable x_s is stop by the first of the following three situations happening:

i) x_s reduces to 0

- ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} < 0$)
- iii) a basic variable x_{j_r}

increases to reach its upper

bound u_{j_r} (in the case

$$\overline{a}_{rs} > 0$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (-\theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (-\theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (-\theta) \le u_{j_m}$$

$$x_s = u_s - \theta \ge 0$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{-a_{is}}: a_{is} < 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{a_{is}}: a_{is} > 0\right\}\right\}$$

If $\theta = u_s$, then the set of basic variables is not modified, and the same basis is used at the next iteration. the variable x_s remains non basic but its value is modified from u_s to 0. Go to step 1.

• The decrease θ of the entering variable x_s is stop by the first of the following three situations happening:

i) x_s reduces to 0

- ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} < 0$)
- iii) a basic variable x_{j_r}

increases to reach its upper

bound u_{j_r} (in the case

$$\overline{a}_{rs} > 0)$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (-\theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (-\theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (-\theta) \le u_{j_m}$$

$$x_s = u_s - \theta \ge 0$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{-a_{is}}: a_{is} < 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{a_{is}}: a_{is} > 0\right\}\right\}$$

If
$$\theta = \frac{g_r}{-a_{rs}} = \min_{1 \le i \le m} \left\{ \frac{g_i}{-a_{is}} : \overline{a}_{is} < 0 \right\},$$

then the value on the entretring variable x_s is reduced by θ (i.e., $x_s \leftarrow u_s - \theta$). The entering variable x_s becomes a basic variable replacing the leaving variable x_{j_r} becoming a non basic variable equal to 0 Pivot on a_{j_rs} , and go to step 1.

• The decrease θ of the entering variable x_s is stop by the first of the following three situations happening:

i) x_s reduces to 0

- ii) a basic variable x_{j_r} decreases to 0 (in this case $\overline{a}_{rs} < 0$)
- iii) a basic variable x_{j_r}

increases to reach its upper bound u_{j_r} (in ths case

$$\overline{a}_{rs} > 0)$$

$$0 \le x_{j_1} = g_1 - \overline{a}_{1s} (-\theta) \le u_{j_1}$$

$$0 \le x_{j_r} = g_r - \overline{a}_{rs} (-\theta) \le u_{j_r}$$

$$0 \le x_{j_m} = g_m - \overline{a}_{ms} (-\theta) \le u_{j_m}$$

$$x_s = u_s - \theta \ge 0$$

Let
$$g_i = \overline{b}_i - \sum_{j \in JB} \overline{a}_{ij} x_j$$

Value of the basic variables
$$x_{j_i}$$

$$\theta = \min\left\{u_{s}, \min_{1 \le i \le m}\left\{\frac{g_{i}}{-a_{is}}: a_{is} < 0\right\}, \min_{1 \le i \le m}\left\{\frac{u_{j_{i}} - g_{i}}{-a_{is}}: a_{is} > 0\right\}\right\}$$

If
$$\theta = \frac{u_{j_r} - g_r}{\overline{a}_{rs}} = \min_{1 \le i \le m} \left\{ \frac{u_{j_i} - g_i}{\overline{a}_{is}} : \overline{a}_{is} > 0 \right\},$$

then the value on the entretring variable x_s is reduced by θ (i.e., $x_s \leftarrow u_s - \theta$). The entering variable x_s becomes a basic variable replacing the leaving variable x_{j_r} becoming a non basic variable equal to u_{j_r} Pivot on a_{j_rs} , and go to step 1.

References

- M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, "Linear Programming and Network Flows", 3rd edition, *Wiley-Interscience* (2005), p. 217
- F.S. Hillier, G.J. Lieberman, "Introduction to Operations Research", *Mc Graw Hill* (2005), Section 7.3
- D. G. Luenberger, "Linear and Nonlinear Programming", 2nd edition, *Addison-Wesley* (1984), Section 3.6