Simplex algorithm for

problems with bounded variables

Simplex method for problems with bounded variables

- Consider the linear programming problem with bounded variables

$$
\begin{array}{ll}
\min & c^{\mathrm{T}} g \\
\text { s.t. } & A g=h \\
& l_{j} \leq g_{j} \leq q_{j} \quad j=1,2, \ldots, n
\end{array}
$$

where $g, c, l, q \in R^{n}, h \in R^{m}$, and A is a $m \times n$ matrix

- Complete the following change of variables to reduce the lower bound to 0

$$
\left.x_{j}=g_{j}-l_{j} \quad \text { (i.e., } g_{j}=x_{j}+l_{j}\right)
$$

Simplex method for problems with bounded variables

the problem becomes

$$
\min c^{\mathrm{T}} g
$$

$$
\text { s.t. } \quad A g=h
$$

$$
\begin{array}{ll}
\min & c^{\mathrm{T}}(x+l) \\
\text { s.t. } & A(x+l)=h \\
& l_{j} \leq x_{j}+l_{j} \leq q_{j} \quad j=1,2, \ldots, n
\end{array}
$$

$$
l_{j} \leq g_{j} \leq q_{j} \quad j=1,2, \ldots, n
$$

where $c, x, l, q \in R^{n}, h \in R^{m}$, and A is a $m \times n$ matrix

- Complete the following change of variables to reduce the lower bound to 0

$$
\left.x_{j}=g_{j}-l_{j} \quad \text { (i.e., } g_{j}=x_{j}+l_{j}\right)
$$

Simplex method for problems with bounded variables

the problem becomes

$$
\begin{array}{ll}
\min & c^{\mathrm{T}}(x+l) \\
\text { s.t. } & A(x+l)=h \\
& l_{j} \leq x_{j}+l_{j} \leq q_{j} \quad j=1,2, \ldots, n
\end{array}
$$

where $c, x, l, q \in R^{n}, h \in R^{m}$, and A is a $m \times n$ matrix
$\min c^{\mathrm{T}} x+c^{\mathrm{T}} l$

$$
\begin{aligned}
& \text { s.t. } \quad A x=h-A l \\
& \quad l_{j}-l_{j} \leq x_{j}+l_{j}-l_{j} \leq q_{j}-l_{j} \quad j=1,2, \ldots, n
\end{aligned}
$$

replacing : $u_{j}=q_{j}-l_{j}$ and $b=h-A l$
$\min c^{\mathrm{T}} x+c^{\mathrm{T}} l$
s.t. $A x=b$

$$
0 \leq x_{j} \leq u_{j} \quad j=1,2, \ldots, n
$$

Simplex method for problems with bounded variables

- In this problem

$$
\begin{aligned}
& \min \quad c^{\mathrm{T}} x \\
& \text { s.t. } \quad A x=b \\
& \quad 0 \leq x_{j} \leq u_{j} \quad j=1,2, \ldots, n
\end{aligned}
$$

since $c^{\mathrm{T}} l$ is a constant, we can eliminate it from the minimisation without modifying the optimal solution.
Then in the rest of the presentation we consider the problem without this constant.

$$
\begin{array}{ll}
\min & c^{\mathrm{T}} x \\
\text { s.t. } & A x=b \\
& 0 \leq x_{j} \leq u_{j} \quad j=1,2, \ldots, n
\end{array}
$$

- Consider the explicit formulation of the problem

$$
\begin{aligned}
& \operatorname{minin}_{z} z=\sum_{j=j=1}^{n} \sum_{C}^{n} x_{j_{j}} x_{j}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq x x_{j} \leq+t l y_{j}=u \dot{y}_{j}=1,2 j . \ldots n, 2, \ldots, n \\
& x_{j}, y_{j} \geq 0 \quad ; \quad=1,2, \ldots, n
\end{aligned}
$$

- One way of solving the problem is to introduce slack variables y_{j}, and then use the simplex algorithm.

$$
\begin{array}{rl}
\min z=\sum_{j=1}^{n} c_{j} x_{j} & \text { Tableau with } m+n \text { rows } \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \\
& i=1,2, \ldots, m \\
x_{j}+y_{j}=u_{j} & j=1,2, \ldots, n \\
x_{j}, y_{j} \geq 0 & j=1,2, \ldots, n
\end{array}
$$

$$
\begin{array}{rlr}
\min & z= & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad i=1,2, \ldots, m \\
& 0 \leq x_{j}: \quad j=1,2, \ldots, n \\
& & \\
& \text { account implicitly }
\end{array}
$$

$\min z=\sum_{j=1}^{n} c_{j} x_{j}$
s.t. $\quad \sum_{j=1}^{n} a_{i j} x_{j} \quad=b_{i} \quad i=1,2, \ldots, m$

$$
\begin{array}{rl}
x_{j}+y_{j}=u_{j} & j=1,2, \ldots, n \\
x_{j}, y_{j} \geq 0 & j=1,2, \ldots, n
\end{array}
$$

Non degeneracy:
all the basic variables are positive at each iteration

- Consider a basic feasible solution of this problem
- Because of the constraints $x_{j}+y_{j}=u_{j}$, at least one of the variables x_{j} or y_{j} is basic, $j=1,2, \ldots, n$.
- Then for all $j=1,2, \ldots, n$, one of the three situations holds:
a) $x_{j}=u_{j}$ is basic and $y_{j}=0$ is non basic
b) $x_{j}=0$ is non basic and $y_{j}=u_{j}$ is basic
c) $0<x_{j}<u_{j}$ is basic and $0<y_{j}<u_{j}$ is basic
$\min z=\sum_{j=1}^{n} c_{j} x_{j}$
Sujet à $\quad \sum_{j=1}^{n} a_{i j} x_{j} \quad=b_{i} \quad i=1,2, \ldots, m$

$$
\begin{array}{rl}
x_{j}+y_{j}=u_{j} & j=1,2, \ldots, n \\
x_{j}, y_{j} \geq 0 & i=1.2 \ldots . n
\end{array}
$$

$m+n$ basic variables required
There are n variables y_{j}
\Downarrow
There are at least m variables x_{j} that are basic
a) x_{j} basic; y_{j} non basic
b) x_{j} non basic; y_{j} basic
c) x_{j} basic; y_{j} basic

$$
\min z=\sum_{j=1}^{n} c_{j} x_{j}
$$

a) x_{j} basic; y_{j} non basic
b) x_{j} non basic; y_{j} basic
c) x_{j} basic; y_{j} basic

Sujet à $\quad \sum_{j=1}^{n} a_{i j} x_{j} \quad=b_{i} \quad i=1,2, \ldots, m$

$$
\begin{array}{rl}
x_{j}+y_{j}=u_{j} & j=1,2, \ldots, n \\
x_{j}, y_{j} \geq 0 & j=1,2, \ldots, n
\end{array}
$$

$m+n$ basic variables required
There are n variables y_{j}

There are at least m variables x_{j} that are basic

Exactly m variables x_{j} satisfying

$$
0<x_{j}<u_{j} .
$$

For contradiction, if $m^{0} \neq m$ variables x_{j} satisfy the relation, then the m^{0} corresponding variables y_{j} would be basic.
Furthermore, for the $n-m^{0}$ other indices j, either $x_{j}=u_{j}$ (case a) or $y_{j}=u_{j}$ (case b) would be verified.
Then the number of basic variables would be equal to

$$
2 m^{0}+\left(n-m^{0}\right)=m^{0}+n \neq m+n
$$

$$
\begin{array}{rlr}
\min & z= & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{i=1}^{n} a_{i j} x_{j} \quad=b_{i} & i=1,2, \ldots, m \\
& x_{j}+y_{j}=u_{j} & j=1,2, \ldots, n \\
x_{j}, y_{j} \geq 0 & j=1,2, \ldots, n
\end{array}
$$

$$
\begin{aligned}
\min & z= \\
\text { s.t. } & c^{\mathrm{T}} x \\
& \\
& \\
& x+0 y+I y=b \\
& \\
& {\left[\begin{array}{ll}
A & 0 \\
I & I
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { To simplify notation, assume } \\
& \text { the following basic variables: } \\
& 0<x_{i}<u_{i} \quad i=1, \ldots, m \\
& 0<y_{i}<u_{i} \quad i=1, \ldots, m \\
& x_{i}=u_{i} \quad i=m+1, \ldots, m+l \\
& y_{i}=u_{i} \quad i=m+l+1, \ldots, m+n
\end{aligned}
$$

$$
\Xi=\left[\begin{array}{cccc}
B_{n} & 0 & D_{\ldots} & 0 \\
I_{1} & I_{1} & 0 & 0 \\
0 & 0 & I_{2} & 0 \\
0 & 0 & 0 & I_{3}
\end{array}\right]
$$

$$
\begin{aligned}
\Xi & =\left[\begin{array}{lllll}
B_{r} & 0 & D_{n} & - & 0 \\
I_{1} & I_{1} & 0 & 0 \\
0 & 0 & I_{2} & 0 \\
0 & 0 & 0 & I_{3}
\end{array}\right] \\
& =\left[\begin{array}{llll}
B & 0 & D & 0 \\
I_{1} & & \\
0 & I & \\
0 & & &
\end{array}\right]
\end{aligned}
$$

where the matrix I is $n \times n$

$$
\begin{aligned}
\Xi & =\left[\begin{array}{llll}
B_{r} & 0 & D_{n} & - \\
I_{1} & I_{1} & 0 & 0 \\
0 & 0 & I_{2} & 0 \\
0 & 0 & 0 & I_{3}
\end{array}\right] \\
& =\left[\begin{array}{llll}
B & 0 & D & 0 \\
I_{1} & & \\
0 & I & \\
0 & &
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & =a d-b c \\
& =d\left(a-b d^{-1} c\right)
\end{aligned}
$$

where the matrix I is $n \times n$

$$
\begin{aligned}
& \Xi=\left[\begin{array}{cccc}
B_{\bullet} & 0 & D_{n} & \ldots \\
I_{1} & I_{1} & 0 & 0 \\
0 & 0 & I_{2} & 0 \\
0 & 0 & 0 & I_{3}
\end{array}\right] \\
& =\left[\begin{array}{llll}
B & 0 & D & 0 \\
I_{1} & & \\
0 & I & \\
0 & &
\end{array}\right] \\
& \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c \\
& =d\left(a-b d^{-1} c\right) \\
& \text { where the matrix } I \text { is } n \times n \\
& \operatorname{det}(\Xi)=\operatorname{det}(I)\left\{\operatorname{det}(B)-\operatorname{det}\left(\left[\begin{array}{lll}
0 & D & 0
\end{array}\right] I^{-1}\left[\begin{array}{l}
I_{1} \\
0 \\
0
\end{array}\right]\right)\right\} \\
& =\operatorname{det}(I)\{\operatorname{det}(B)-\operatorname{det}(\tilde{0})\} \\
& \text { where the matrix } \tilde{0} \text { is } m \times m \text { since } \\
& {\left[\begin{array}{lll}
0 & D & 0
\end{array}\right] \text { is a } m \times n \text { matrix and }} \\
& {\left[\begin{array}{l}
I_{1} \\
0 \\
0
\end{array}\right] \text { is a } n \times m \text { matrix }}
\end{aligned}
$$

$$
\begin{aligned}
& \Xi=\left[\begin{array}{cccc}
B_{\leftarrow} & 0 & D_{n} & \ldots \\
I_{1} & I_{1} & 0 & 0 \\
0 & 0 & I_{2} & 0 \\
0 & 0 & 0 & I_{3}
\end{array}\right] \\
& =\left[\begin{array}{llll}
B & 0 & D & 0 \\
I_{1} & & \\
0 & I & \\
0 & &
\end{array}\right] \\
& \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c \\
& =d\left(a-b d^{-1} c\right) \\
& \text { where the matrix } I \text { is } n \times n \\
& \operatorname{det}(\Xi)=\operatorname{det}(I)\left\{\operatorname{det}(B)-\operatorname{det}\left(\left[\begin{array}{lll}
0 & D & 0
\end{array}\right] I^{-1}\left[\begin{array}{l}
I_{1} \\
0 \\
0
\end{array}\right]\right)\right\} \\
& =\operatorname{det}(I)\{\operatorname{det}(B)-\operatorname{det}(\tilde{0})\} \\
& \text { where the matrix } \tilde{0} \text { is } m \times m \text { since } \\
& {\left[\begin{array}{lll}
0 & D & 0
\end{array}\right] \text { is a } m \times n \text { matrix and }} \\
& {\left[\begin{array}{l}
I_{1} \\
0 \\
0
\end{array}\right] \text { is a } n \times m \text { matrix }} \\
& \text { Then } \\
& \operatorname{det}(\Xi)=\operatorname{det}(I) \operatorname{det}(B) .
\end{aligned}
$$

$$
\begin{aligned}
& \Xi=\left[\begin{array}{cccc}
B_{\leftarrow} & 0 & D_{n} & \ldots \\
I_{1} & I_{1} & 0 & 0 \\
0 & 0 & I_{2} & 0 \\
0 & 0 & 0 & I_{3}
\end{array}\right] \\
& =\left[\begin{array}{llll}
B & 0 & D & 0 \\
I_{1} & & \\
0 & I & \\
0 & &
\end{array}\right] \\
& \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c \\
& =d\left(a-b d^{-1} c\right) \\
& \text { where the matrix } I \text { is } n \times n \\
& \operatorname{det}(\Xi)=\operatorname{det}(I)\left\{\operatorname{det}(B)-\operatorname{det}\left(\left[\begin{array}{lll}
0 & D & 0
\end{array}\right] I^{-1}\left[\begin{array}{l}
I_{1} \\
0 \\
0
\end{array}\right]\right)\right\} \\
& =\operatorname{det}(I)\{\operatorname{det}(B)-\operatorname{det}(\tilde{0})\} \\
& \text { where the matrix } \tilde{0} \text { is } m \times m \text { since } \\
& {\left[\begin{array}{lll}
0 & D & 0
\end{array}\right] \text { is a } m \times n \text { matrix and }} \\
& {\left[\begin{array}{l}
I_{1} \\
0 \\
0
\end{array}\right] \text { is a } n \times m \text { matrix }} \\
& \text { Then } \\
& \operatorname{det}(\Xi)=\operatorname{det}(I) \operatorname{det}(B) . \\
& \text { Since } \Xi \text { is a basis, then } \operatorname{det}(\Xi) \neq 0 \text {. } \\
& \text { Consequently } \operatorname{det}(B)=\operatorname{det}(\Xi) \neq 0 \text { and then } B \text { is non singular. }
\end{aligned}
$$

$$
\begin{aligned}
& \Xi=\left[\begin{array}{cccc}
B_{\leftarrow} & 0 & D_{n} & \ldots \\
I_{1} & I_{1} & 0 & 0 \\
0 & 0 & I_{2} & 0 \\
0 & 0 & 0 & I_{3}
\end{array}\right] \\
& =\left[\begin{array}{llll}
B & 0 & D & 0 \\
I_{1} & & \\
0 & I & \\
0 & &
\end{array}\right] \\
& \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c \\
& =d\left(a-b d^{-1} c\right) \\
& \text { where the matrix } I \text { is } n \times n \\
& \operatorname{det}(\Xi)=\operatorname{det}(I)\left\{\operatorname{det}(B)-\operatorname{det}\left(\left[\begin{array}{lll}
0 & D & 0
\end{array}\right] I^{-1}\left[\begin{array}{l}
I_{1} \\
0 \\
0
\end{array}\right]\right)\right\} \\
& =\operatorname{det}(I)\{\operatorname{det}(B)-\operatorname{det}(\tilde{0})\} \\
& \text { where the matrix } \tilde{0} \text { is } m \times m \text { since } \\
& {\left[\begin{array}{lll}
0 & D & 0
\end{array}\right] \text { is a } m \times n \text { matrix and }} \\
& {\left[\begin{array}{l}
I_{1} \\
0 \\
0
\end{array}\right] \text { is a } n \times m \text { matrix }} \\
& \text { Then } \\
& \operatorname{det}(\Xi)=\operatorname{det}(I) \operatorname{det}(B) \text {. } \\
& \text { Since } \Xi \text { is a basis, then } \operatorname{det}(\Xi) \neq 0 \text {. } \\
& \text { Consequently } \operatorname{det}(B)=\operatorname{det}(\Xi) \neq 0 \text { and then } B \text { is non singular. } \\
& \text { Then } B \text { is a basis of } A \text {. }
\end{aligned}
$$

The basis has the following form

- Then, we can specify a variant of the simplex method to solve this problem specifically:

$$
\begin{array}{rll}
\text { yin } & z= & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad i=1,2, \ldots, m \\
& 0 \leq x_{j} \leq u_{j} \quad j=1,2, \ldots, n
\end{array}
$$

by dealing implictly with the upper bound u_{j}. At each iteration, we consider a solution (basic) associated with a basis B de A having
m basic variables
$0<x_{j}<u_{j}$
$j \in I B$
$n-m$ non basic variables $x_{j}=0$ ou $u_{j} \quad j \in J B$

$$
\begin{array}{rlr}
\min z & z=\sum_{j=1}^{n} c_{j} x_{j} & \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \quad=b_{i} & i=1,2, \ldots, m \\
& x_{j}+y_{j}=u_{j} & j=1,2, \ldots, n \\
x_{j}, y_{j} \geq 0 & j=1,2, \ldots, n
\end{array}
$$

- At each iteration, we consider a solution (basic) associated with a basis B de A having

$$
m \text { basic variables } \quad 0<x_{j}<u_{j} \quad j \in I B
$$

$n-m$ non basic variables $x_{j}=0$ or $u_{j} \quad j \in J B$

- Denote the indices of the basic variables $I B=\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$ where j_{i} is the index of the basic variable in the $i^{\text {th }}$ row, then

$$
\begin{array}{ll}
x_{j}=0 \quad \text { ou } u_{j} & j \in J B \\
x_{j_{i}}=\bar{b}_{i}-\sum_{j \in J B} \bar{a}_{i j} x_{j} & i=1,2, \ldots, m
\end{array}
$$

Dependent variables	$x_{1} x_{2} \cdots x_{y} \cdots x_{m}$	$\begin{array}{cccl}x_{m+1} & \cdots x_{s} & \cdots & x_{n}-z\end{array}$	Tr.h.s.
x_{1}	1	$\bar{a}_{1 m+1} \cdots \cdots \bar{a}_{1 s} \cdots \overline{\bar{a}}_{1 n}$	\bar{b}_{1}
x_{2}	1	$\bar{a}_{2 m+1} \cdots \bar{a}_{2,} \cdots \bar{a}_{2 n}$	\bar{b}_{2}
\vdots	\because		\vdots
x_{r}	1	$\bar{a}_{r_{m+1}} \cdots \bar{a}_{r s} \cdots \bar{a}_{r n}$	\bar{b}_{r}
:	!	${ }^{\prime} \cdot$	\vdots
x_{m}	1	$\bar{a}_{m m+1} \cdots \bar{a}_{m s} \cdots \bar{a}_{m n}$	\bar{b}_{m}
$-z$		$\begin{array}{ccccc}\bar{c}_{m+1} & \cdots & \bar{c}_{s} & \cdots & \bar{c}_{n} \\ 1\end{array}$	\bar{z}

$$
\begin{aligned}
& \text { We find similar } \\
& \text { values as in problems } \\
& \text { where there are no } \\
& \text { upper bounds, except for } \\
& \text { non basic variables } \\
& x_{j}=0 \text { or } u_{j} \quad j \in J B \\
& \hline
\end{aligned}
$$

We find similar
values as in problems where there are no upper bounds, except for non basic variables $x_{j}=0$ or $u_{j} \quad j \in J B$

We have to modify the entering criterion and the leaving criterion accordingly to generate a variant of the simplex algorithm for this problem

Step 1: Selecting the entering variable

The criterion to select the entering variable must be modified to account for the non basic variables x_{j} being equal to their upper bounds u_{j} since these variables can be reduced.
Hence, for an index $j \in J B$

$$
\begin{aligned}
& \text { if } x_{j}=0 \text { and } \bar{c}_{j}<0, \text { it is interesting to increase } x_{j} \\
& \text { if } x_{j}=u_{j} \text { and } \bar{c}_{j}>0, \text { it is interesting to decrease } x_{j}
\end{aligned}
$$

Determine $\bar{c}_{s_{1}}=\min _{j \in J B}\left\{\bar{c}_{j}: x_{j}=0\right\}$ and $\bar{c}_{s_{2}}=\max _{j \in J B}\left\{\bar{c}_{j}: x_{j}=u_{j}\right\}$
Let $\bar{c}_{s}=\min \left\{\bar{c}_{s_{1}},-\bar{c}_{s_{2}}\right\} \quad\left(\max \left\{\left|\bar{c}_{s_{1}}\right|,\left|\bar{c}_{s_{2}}\right|\right\}\right)$
If $\bar{c}_{s} \geq 0$, then the solution is optimal, and the algoithm stops.
If $\bar{c}_{s}<0$ and $\bar{c}_{s}=\bar{c}_{s_{1}}$, then the non basic variable x_{s} increases, and go to Step 2.1.
If $\bar{c}_{s}<0$ et $\bar{c}_{s}<\bar{c}_{s_{1}}$, then the non basic variable x_{s} decreases, and go to Step 2.2.

Step 2.1: Selecting the leaving variable

- The increase θ of the entering variable x_{s} is stop by the first of
 to 0 (in this case $\bar{a}_{r s}>0$)
iii) a basic variable $x_{j_{r}}$ increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\left.\bar{a}_{r s}<0\right)\left|\begin{array}{ll}
0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(0+\theta) \leq u_{j_{1}} \\
\vdots \\
0 \leq x_{j_{r}}=g_{r}-\bar{a}_{r s} \\
\vdots \\
0 \leq x_{j_{m}}=g_{m}-\bar{a}_{n s}(0+\theta) \leq u_{j_{r}} \\
x_{s}=0+\theta \leq u_{s}
\end{array}\right|
$$

For all i such that $\bar{a}_{i s}>0$, then $x_{j_{i}}$ decreases when x_{s} increases of the value θ. It follows $x_{j_{i}}=g_{i}-\bar{a}_{i s} \theta \geq 0 \Leftrightarrow \bar{a}_{i s} \theta \leq g_{i}$

$$
\Leftrightarrow \theta \leq \frac{g_{i}}{\bar{a}_{i s}} .
$$

Then $\theta \leq \min _{1 \leq i \leq m}\left\{\frac{g_{i}}{\bar{a}_{i s}}: \bar{a}_{i s}>0\right\}$

Step 2.1: Selecting the leaving variable

- The increase θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reach its upper bound u_{s}
ii) a basic variable $x_{j_{r}}$ decreases to 0 (in this case $\bar{a}_{r s}>0$)
iii) a basic variable $x_{j_{r}}$ increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\left.\bar{a}_{r s}<0\right)\left|\begin{array}{l}
0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(0+\theta) \leq u_{j 1} \\
\vdots \\
0 \leq x_{j_{r}}=g_{r}-\bar{a}_{r s}(0+\theta) \leq u_{j_{r}} \\
\vdots \\
0 \leq x_{j_{m}}=g_{m}-\bar{a}_{m s}(0+\theta) \leq u_{j_{m}} \\
x_{s}=0+\theta \leq u_{s}
\end{array}\right|
$$

For all i such that $\bar{a}_{i s}<0$, then $x_{j_{i}}$ increses when x_{s} increases of the value θ. It follows
$x_{j_{i}}=g_{i}-\bar{a}_{i s} \theta \leq u_{j_{i}} \Leftrightarrow-\bar{a}_{i s} \theta \leq u_{j_{i}}-g_{i}$ $\Leftrightarrow \theta \leq \frac{u_{j_{i}}-g_{i}}{-\bar{a}_{i s}}$.
Then $\theta \leq \min _{1 \leq i \leq m}\left\{\frac{u_{j_{i}}-g_{i}}{-\bar{a}_{i s}}: \bar{a}_{i s}<0\right\}$

Step 2.1: Selecting the leaving variable

- The increase θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reach its upper bound u_{s}

$$
\left.\left.\left.\begin{array}{r|}
\text { Let } g_{i}=\bar{b}_{i}-\sum_{j \in J B} \bar{a}_{i j} x_{j} \\
\theta=\min \left\{u_{s}, \min _{1 \leq i \leq m}\left\{\frac{g_{i}}{\overline{a_{i s}}}: \bar{a}_{i s}>0\right\}, \min _{1 \leq i s m}\left\{\frac{u_{j_{i}}-g_{i}}{-\bar{a}_{i s}}: \bar{a}_{i s}<0\right\}\right. \\
x_{j_{i}}
\end{array}\right\}\right\}\right\}
$$

ii) a basic variable $x_{j_{r}}$ decreases
to 0 (in this case $\bar{a}_{r s}>0$)
iii) a basic variable $x_{j_{r}}$ increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\left.\bar{a}_{r s}<0\right)\left|\begin{array}{l}
0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(0+\theta) \leq u_{j_{1}} \\
\vdots \\
0 \leq x_{j_{r}}=g_{r}-\bar{a}_{r s}(0+\theta) \leq u_{j_{r}} \\
\vdots \\
0 \leq x_{j_{m}}=g_{m}-\bar{a}_{m s}(0+\theta) \leq u_{j_{m}} \\
x_{s}=0+\theta \leq u_{s}
\end{array}\right|
$$

If $\theta=\infty$, then the problem is not bounded from below, and the algorithm stops.

Step 2.1: Selecting the leaving variable

- The increase θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reach its upper bound u_{s}

Let $g_{i}=\bar{b}_{i}-\sum_{j \in J B} \bar{a}_{i j} x_{j}$Value of the basic variables $x_{j_{i}}$ $\theta=\min \left\{u_{s}, \min _{1 \leq s m}\left\{\frac{g_{i}}{\bar{a}_{i s}}: \bar{a}_{i s}>0\right\}, \min _{1 \leq m}\left\{\frac{\left.u_{j_{i}}-g_{i}-\bar{a}_{i s}<0\right\}}{-\bar{a}_{i s}}: a_{i s}\right\}\right\}$

iii) a basic variable $x_{j_{r}}$
increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\left.\bar{a}_{r s}<0\right)\left|\begin{array}{ll}
0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(0+\theta) \leq u_{j_{1}} \\
\vdots \\
0 \leq x_{j_{r}}=g_{r}-\bar{a}_{r s} \\
\vdots \\
0 \leq x_{j_{m}}=g_{m}-\bar{a}_{n s}(0+\theta) \leq u_{j_{r}} \\
x_{s}=0+\theta \leq u_{s}
\end{array}\right|
$$

If $x_{s}=u_{s}$, then the set of basic variables is not modified, and the same basis is used at the next iteration.
the variable x_{s} remains non basic but its value is modified from 0 to u_{s}. Go to step 1.

Step 2.1: Selecting the leaving variable

- The increase θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reach its upper bound u_{s}
ii) a basic variable $x_{j_{r}}$ decreases to 0 (in this case $\bar{a}_{r s}>0$)
iii) a basic variable $x_{j_{r}}$ increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\text { If } \theta=\frac{g_{r}}{\bar{a}_{r s}}=\min _{1 \leq i \leq m}\left\{\frac{g_{i}}{\bar{a}_{i s}}: \bar{a}_{i s}>0\right\}
$$

$$
\left.\bar{a}_{r s}<0\right)\left|\begin{array}{l}
0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(0+\theta) \leq u_{j 1} \\
\vdots \\
0 \leq x_{j_{r}}=g_{r}-\bar{a}_{r s}(0+\theta) \leq u_{j_{r}} \\
\vdots \\
0 \leq x_{j_{m}}=g_{m}-\bar{a}_{m s}(0+\theta) \leq u_{j_{m}} \\
x_{s}=0+\theta \leq u_{s}
\end{array}\right|
$$

then the value on the entretring variable x_{s} increases to θ.
The entering variable x_{s} becomes a basic variable replacing the leaving variable $x_{j_{r}}$ becoming a non basic variable equal to 0 Pivot on $a_{j_{r} s}$, and go to step 1.

Step 2.1: Selecting the leaving variable

- The increase θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reach its upper bound u_{s}
ii) a basic variable $x_{j_{r}}$ decreases
to 0 (in this case $\bar{a}_{r s}>0$)
iii) a basic variable $x_{j_{r}}$
increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\left.\bar{a}_{r s}<0\right)\left|\begin{array}{ll}
0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(0+\theta) \leq u_{j_{1}} \\
\vdots \\
0 \leq x_{j_{r}}=g_{r}-\bar{a}_{r s}(0+\theta) \leq u_{j_{r}} \\
\vdots \\
0 \leq x_{j_{m}}=g_{m}-\bar{a}_{m s}(0+\theta) \leq u_{j_{m}} \\
x_{s}=0+\theta \leq u_{s}
\end{array}\right|
$$

$$
\text { If } \theta=\frac{u_{j_{r}}-g_{r}}{-\bar{a}_{r s}}=\min _{1 \leq i \leq m}\left\{\frac{u_{j_{i}}-g_{i}}{-\bar{a}_{i s}}: \bar{a}_{i s}<0\right\}
$$

then the value on the entretring variable x_{s} increases to θ.
The entering variable x_{s} becomes a basic variable replacing the leaving variable $x_{j_{r}}$ becoming a non basic variable equal to $u_{j_{r}}$ Pivot on $a_{j_{r} s}$, and go to step 1.

Step 1: Selecting the entering variable

The criterion to select the entering variable must be modified to account for the non basic variables x_{j} being equal to their upper bounds u_{j} since these variables can be reduced.
Hence, for an index $j \in J B$

$$
\begin{aligned}
& \text { if } x_{j}=0 \text { and } \bar{c}_{j}<0, \text { it is interesting to increase } x_{j} \\
& \text { if } x_{j}=u_{j} \text { and } \bar{c}_{j}>0, \text { it is interesting to decrease } x_{j}
\end{aligned}
$$

Determine $\bar{c}_{s_{1}}=\min _{j \in J B}\left\{\bar{c}_{j}: x_{j}=0\right\}$ and $\bar{c}_{s_{2}}=\max _{j \in J B}\left\{\bar{c}_{j}: x_{j}=u_{j}\right\}$
Let $\bar{c}_{s}=\min \left\{\bar{c}_{s_{1}},-\bar{c}_{s_{2}}\right\} \quad\left(\max \left\{\left|\bar{c}_{s_{1}}\right|,\left|\bar{c}_{s_{2}}\right|\right\}\right)$
If $\bar{c}_{s} \geq 0$, then the solution is optimal, and the algoithm stops.
If $\bar{c}_{s}<0$ and $\bar{c}_{s}=\bar{c}_{s_{1}}$, then the non basic variable x_{s} increases, and go to Step 2.1.
If $\bar{c}_{s}<0$ et $\bar{c}_{s}<\bar{c}_{s_{1}}$, then the non basic variable x_{s} decreases, and go to Step 2.2.

Step 2.2: Selecting the leaving variable

- The decrease θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reduces to 0
ii) a basic variable $x_{j_{r}}$ decreases
to 0 (in this case $\bar{a}_{r s}<0$)
iii) a basic variable $x_{j_{r}}$ increases to reach its upper bound $u_{j_{r}}$ (in this case

$$
\left.\bar{a}_{r s}>0\right) \left\lvert\, \begin{aligned}
& 0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(-\theta) \leq u_{j_{1}} \\
& \vdots \\
& \begin{array}{l}
\vdots \\
\vdots \\
x_{j_{r}}=g_{r} \\
0 \leq \bar{a}_{r s} \\
0 \\
\left.x_{j_{m}}=g_{m}-\theta\right) \leq u_{j_{r}} \\
x_{s}=\bar{a}_{n s}(-\theta) \leq u_{j_{m}}-\theta \geq 0
\end{array}
\end{aligned}\right.
$$

For all i such that $\bar{a}_{i s}<0$, then $x_{j_{i}}$ decreases when x_{s} decreases of the value θ. It follows

$$
\begin{aligned}
& \begin{aligned}
x_{j_{i}}=g_{i}-\bar{a}_{i s}(-\theta) \geq 0 & \Leftrightarrow-\bar{a}_{i s} \theta \leq g_{i} \\
& \Leftrightarrow \theta \leq \frac{g_{i}}{-\bar{a}_{i s}} .
\end{aligned} \\
& \text { Then } \theta \leq \min _{1 \leq i \leq m}\left\{\frac{g_{i}}{-\bar{a}_{i s}}: \bar{a}_{i s}<0\right\}
\end{aligned}
$$

Step 2.2: Selecting the leaving variable

- The decrease θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reduces to 0
ii) a basic variable $x_{j_{r}}$ decreases
to 0 (in this case $\bar{a}_{r s}<0$)
iii) a basic variable $x_{j_{r}}$
increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\left.\bar{a}_{r s}>0\right) \left\lvert\, \begin{aligned}
& 0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(-\theta) \leq u_{j_{1}} \\
& \vdots \\
& \begin{array}{l}
\vdots \\
\vdots \\
x_{j_{r}}=g_{r} \\
\vdots \\
0 \leq x_{j_{m s}}=g_{m}- \\
-\bar{a}_{m s}(-\theta) \leq u_{j_{r}} \\
x_{s}=u_{s}-\theta \geq u_{j_{m}}
\end{array}
\end{aligned}\right.
$$

For all i such that $\bar{a}_{i s}>0$, then $x_{j_{i}}$ increases when x_{s} decreasess of the value θ. It follows $x_{j_{i}}=g_{i}-\bar{a}_{i s}(-\theta) \leq u_{j_{i}} \Leftrightarrow \bar{a}_{i s} \theta \leq u_{j_{i}}-g_{i}$ $\Leftrightarrow \theta \leq \frac{u_{j_{i}}-g_{i}}{\bar{a}_{i s}}$.
Then $\theta \leq \min _{1 \leq i \leq m}\left\{\frac{u_{j_{i}}-g_{i}}{\bar{a}_{i s}}: \bar{a}_{i s}>0\right\}$

Value of the basic variables

\square

Step 2.2: Selecting the leaving variable

- The decrease θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reduces to 0
ii) a basic variable $x_{j_{r}}$ decreases
to 0 (in this case $\bar{a}_{r s}<0$)
iii) a basic variable $x_{j_{r}}$ increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\left.\bar{a}_{r s}>0\right)\left|\begin{array}{l}
0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(-\theta) \leq u_{j_{1}} \\
\vdots \\
\vdots \leq x_{j_{r}}=g_{r}-\bar{a}_{r s}(-\theta) \leq u_{j_{r}} \\
\vdots \leq x_{j_{m}}=g_{m}-\bar{a}_{n s}(-\theta) \leq u_{j_{m}} \\
x_{s}=u_{s}-\theta \geq 0
\end{array}\right|
$$

If $\theta=u_{s}$, then the set of basic variables is not modified, and the same basis is used at the next iteration. the variable x_{s} remains non basic but its value is modified from u_{s} to 0 . Go to step 1.

Step 2.2: Selecting the leaving variable

- The decrease θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reduces to 0
ii) a basic variable $x_{j_{r}}$ decreases to 0 (in this case $\bar{a}_{r s}<0$)
iii) a basic variable $x_{j_{r}}$
increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\left.\bar{a}_{r s}>0\right)
$$

$$
\begin{array}{|l}
0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(-\theta) \leq u_{j_{1}} \\
\vdots \\
0 \leq x_{j_{r}}=g_{r}-\bar{a}_{r s}(-\theta) \leq u_{j_{r}} \\
\vdots \\
0 \leq x_{j_{m}}=g_{m}-\bar{a}_{m s}(-\theta) \leq u_{j_{m}} \\
x_{s}=u_{s}-\theta \geq 0
\end{array}
$$

$$
\text { If } \theta=\frac{g_{r}}{\overline{-a}}=\min _{1 s i \leq m}\left\{\frac{g_{i}}{\overline{-a}}: \bar{a}_{i s}<0\right\}
$$

then the value on the entretring variable x_{s} is reduced by θ (i.e., $x_{s} \leftarrow u_{s}-\theta$).
The entering variable x_{s} becomes a basic variable replacing the leaving variable $x_{j_{r}}$ becoming a non basic variable equal to 0 Pivot on $a_{j_{r} s}$, and go to step 1.

Step 2.2: Selecting the leaving variable

- The decrease θ of the entering variable x_{s} is stop by the first of the following three situations happening:
i) x_{s} reduces to 0
ii) a basic variable $x_{j_{r}}$ decreases
to 0 (in this case $\bar{a}_{r s}<0$)
iii) a basic variable $x_{j_{r}}$
increases to reach its upper bound $u_{j_{r}}$ (in ths case

$$
\left.\bar{a}_{r s}>0\right)\left|\begin{array}{l}
0 \leq x_{j_{1}}=g_{1}-\bar{a}_{1 s}(-\theta) \leq u_{j_{1}} \\
\vdots \\
\vdots \leq x_{j_{r}}=g_{r}-\bar{a}_{r s}(-\theta) \leq u_{j_{r}} \\
\vdots \leq x_{j_{m}}=g_{m}-\bar{a}_{m s}(-\theta) \leq u_{j_{m}} \\
x_{s}=u_{s}-\theta \geq 0
\end{array}\right|
$$

$$
\text { If } \theta=\frac{u_{j_{r}}-g_{r}}{\bar{a}_{r s}}=\min _{1 \leq i \leq m}\left\{\frac{u_{j_{i}}-g_{i}}{\bar{a}_{i s}}: \bar{a}_{i s}>0\right\}
$$

then the value on the entretring variable x_{s} is reduced by θ (i.e., $x_{s} \leftarrow u_{s}-\theta$).
The entering variable x_{s} becomes a basic variable replacing the leaving variable $x_{j_{r}}$ becoming a non basic variable equal to $u_{j_{r}}$ Pivot on $a_{j_{r} s}$, and go to step 1.

References

M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, " Linear Programming and Network Flows", 3rd edition, Wiley-Interscience (2005), p. 217
F.S. Hillier, G.J. Lieberman, "Introduction to Operations Research", Mc Graw Hill (2005), Section 7.3
D. G. Luenberger, " Linear and Nonlinear Programming ", 2nd edition, Addison-Wesley (1984), Section 3.6

