
Simplex algorithm

for

problems with bounded variables



Simplex method for 

problems with bounded variables

• Consider the linear programming problem with bounded variables

• Complete the following change of variables to reduce the lower bound to 0

xj = gj – lj (i.e., gj = xj + lj )
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Simplex method for 

problems with bounded variables

the problem becomes

• Complete the following change of variables to reduce the lower bound to 0

xj = gj – lj (i.e., gj = xj + lj )
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Simplex method for 

problems with bounded variables

the problem becomes

replacing : uj = qj – lj and     b = h – Al 
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• In this problem

since cTl is a constant, we can eliminate it from the minimisation without

modifying the optimal solution.

Then in the rest of the presentation we consider the problem without this

constant.

Simplex method for

problems with bounded variables
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• Consider the explicit formulation of the problem

• One way of solving the problem is to introduce slack variables yj, 

and then use the simplex algorithm.
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• Consider a basic feasible solution of this problem

• Because of the constraints xj + yj = uj, at least one of the variables xj or yj is

basic, j = 1,2,…,n.

• Then for all  j = 1,2,…,n, one of the three situations holds:

a)  xj = uj is basic and yj = 0 is non basic

b)  xj = 0 is non basic and yj = uj is basic

c)  0 < xj < uj is basic and 0 < yj < uj is basic
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La base a donc la forme suivante

0 < xj < uj 0 < yj < uj xj=uj yj=uj
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The basis has the following form

0 < xj < uj 0 < yj < uj xj=uj yj=uj
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The basis has the following form

m
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• Then, we can specify a variant of the simplex method to solve this problem

specifically:

by dealing implictly with the upper bound uj. At each iteration, we consider

a solution (basic) associated with a basis B de A having

m basic variables

n – m  non basic variables

1

1

min

   s.t.     1,2,...,

0 1,2,...,

n

j j

j

n

ij j i

j

j j

z c x

a x b i m

x u j n

=

=

=

= =

≤ ≤ =

∑

∑

JBjux jj ∈= ou0

IBjux jj ∈<<0



mixabx

JBj

jijiji
,...,2,1=−= ∑

∈

• At each iteration, we consider a solution (basic) associated with a basis B
de A having

m basic variables

n – m  non basic variables

• Denote the indices of the basic variables IB = {j1, j2, …, jm} where ji is the 

index of the basic variable in the  ith row, then
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where there are no
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We have to modify the entering criterion

and the leaving criterion accordingly to

generate a variant of the simplex algorithm

for this problem

We find similar

values as in problems

where there are no

upper bounds, except for 

non basic variables
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Step 1: Selecting the entering variable

The criterion to select the entering variable must be modified to account

for the non basic variables xj being equal to their upper bounds uj since

these variables can be reduced.

Hence, for an index            

if                                  , it is interesting to increase xj

if                                    , it is interesting to decrease xj
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Step 2.1: Selecting the leaving variable

• The increase θ of the entering

variable xs is stop by the first of 

the following three situations 
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Step 2.1: Selecting the leaving variable

• The increase θ of the entering

variable xs is stop by the first of 
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Step 2.1: Selecting the leaving variable

• The increase θ of the entering
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Step 1: Selecting the entering variable

The criterion to select the entering variable must be modified to account

for the non basic variables xj being equal to their upper bounds uj since

these variables can be reduced.

Hence, for an index            

if                                  , it is interesting to increase xj

if                                    , it is interesting to decrease xj

JBj ∈

0 and 0jjx c= <

and 0jj j
x u c= >

{ } { }

{ } { }( )

1 2

1 2 1 2

1

then the solution is optimal

Determine min : 0  and max :

Let min , max ,

If 0,  , and the algoithm stops.

If 0 an then the non basic variable  increasesd , 

s j sj j jj
j JB j JB

s s s s s

s

s s ss

c c x c c x u

c c c c c

c

c c c x

∈ ∈
= = = =

= −

≥

< =

1
then the non basic variab

, and go to Step 2.1.

If le  decre 0 et , , and go to Stases ep 2.2.s s s sxc c c< <
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