
Available online at www.sciencedirect.com
www.elsevier.com/locate/ejor

European Journal of Operational Research 194 (2009) 39–50
Discrete Optimization

An exact �-constraint method for bi-objective
combinatorial optimization problems:

Application to the Traveling Salesman Problem with Profits

Jean-Franc�ois Bérubé, Michel Gendreau, Jean-Yves Potvin *

Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7

Received 4 July 2007; accepted 7 December 2007
Available online 23 December 2007
Abstract

This paper describes an exact �-constraint method for bi-objective combinatorial optimization problems with integer objective values.
This method tackles multi-objective optimization problems by solving a series of single objective subproblems, where all but one objec-
tives are transformed into constraints. We show in this paper that the Pareto front of bi-objective problems can be efficiently generated
with the �-constraint method. Furthermore, we describe heuristics based on information gathered from previous subproblems that sig-
nificantly speed up the method. This approach is used to find the exact Pareto front of the Traveling Salesman Problem with Profits, a
variant of the Traveling Salesman Problem in which a profit or prize value is associated with each vertex. The goal here is to visit a subset
of vertices while addressing two conflicting objectives: maximize the collected prize and minimize the travel costs. We report the first
exact results for this problem on instances derived from classical Vehicle Routing and Traveling Salesman Problem instances with up
to 150 vertices. Results on approximations of the Pareto front obtained from a variant of our exact algorithm are also reported.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Bi-objective combinatorial optimization; �-constraint problem; Pareto front; Branch-and-cut; Traveling Salesman Problem with Profits
1. Introduction

Decision making issues can rarely rely on a single well
defined criterion. Although the multiple facets of a decision
process can be aggregated into a single objective function,
this simplification involves arbitrary rules that can hardly
capture adequately the complexity of real world decision
issues. Thereby, the interest for multi-criteria decision mak-
ing has continually grown during the last decades, as
attested by the number of books and surveys on the topic
(see [6,10,23,28], among others). It comes as no surprise
if more and more publications address combinatorial issues
given that many real world applications involve discrete
decisions or events. The reader is referred to [9] for a review
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.12.014

* Corresponding author.
E-mail address: potvin@iro.umontreal.ca (J.-Y. Potvin).
of the literature on multi-objective combinatorial optimiza-
tion (MOCO) problems.

This paper addresses a special case of MOCO problems,
namely bi-objective combinatorial optimization (BOCO)
problems with integer objective values. BOCO problems
are often considered independently of MOCO problems
because of their particular nature: going from many to
two objectives corresponds to a significant simplification
of the problem (‘‘Three is more than two plus one.” [9]).
General BOCO problems are formulated as

min f ð~xÞ ¼ ðf1ð~xÞ; f2ð~xÞÞ subject to : ~x 2 X; ð1Þ

where X is the set of feasible solutions, or solution space.
We denote each evaluation vector f ð~xÞ as~z and ð~zÞi stands
for the value of the ith objective. To simplify the notation,
we write zi instead of ð~zÞi up to Theorem 3. From there, ð~zÞi
is used to avoid any ambiguity.

mailto:potvin@iro.umontreal.ca

40 J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50
The objective space is defined by Z ¼ f~z ¼ ðz1; z2Þ : zi ¼
fið~xÞ; 8~x 2 X; i ¼ 1; 2g. Since no solution optimizes simul-
taneously both objectives, one will search for an acceptable
trade-off instead of an optimal solution. This compromise
must be such that no strictly better solution exists, even
though some solutions might be considered as equivalent.
This involves a partial order of the objective space, defined
by a dominance relation. The latter is used to characterize
Pareto efficiency, a concept that replaces the optimal solu-
tion of single objective optimization problems.

Definition 1 (Dominance relation). Let ~z and ~z0 2 Z. We
say that ~z dominates ~z0 (~z �~z0) if and only if z1 6 z01 and
z2 6 z02 where at least one inequality is strict.

Definition 2 (Pareto efficiency). A solution ~x 2 X is (Par-
eto) efficient in X, if and only if 9=~x0 2 X such that
f ð~x0Þ � f ð~xÞ.

Definition 3 (Efficient set). The efficient set E ¼ f~x 2 X :~x
is Pareto efficient in Xg.

Definition 4 (Pareto front). The Pareto front F ¼ ff ð~xÞ :
~x 2 Eg.

The Efficient set (E) and Pareto front (F) contain all the
Pareto efficient solutions and all the non-dominated points
in the objective space, respectively. Since the efficient set
is defined on the solution space while the Pareto front is
defined on the objective space, the cardinality of E is
always greater than or equal to the cardinality of F. That
is, there might be many feasible solutions that correspond
to the same point in the objective space. Multi-objective
optimization can approximate the Pareto front to provide
a set of equivalent solutions to the decision maker who will
then be aware of many equivalent tradeoffs. This should
help him to take a decision. In some special cases, when
the size of the efficient set is reasonable, it is even possible
to provide the exact Pareto front to the decision maker.
This paper addresses that kind of problem.

Among exact methods to find the Pareto front of
MOCO problems, weighted sum scalarization is the most
popular according to [9]. This method solves different sin-
gle objective subproblems generated by a linear scalariza-
tion of the objectives. By varying the weights of this
linear function, all supported1 non-dominated points can
be found. It is worth noting that the subproblems are as
easy to solve as the corresponding mono-criterion prob-
lems. On the other hand, linear scalarization cannot find
unsupported points and is therefore ill-suited for non-con-
vex objective spaces such as those associated with MOCO
problems. This drawback can be overcome with the Two-
Phase Method [30] that finds all supported points of F
through a weighted sum scalarization in the first phase,
while non-supported points are found during the second
1 The supported points are those found on the convex envelope of the
objective space.
phase with problem specific methods. Most algorithms that
find the exact Pareto front of MOCO problems are variants
of the Two-Phase Method [9], although other parametric
approaches based on weighted scalarizations can find the
exact Pareto front of BOCO problems [19,24,27].

Besides weighting sum algorithms, the �-constraint
method [6,23] is the best known approach for solving
MOCO problems, according to [9]. This method generates
single objective subproblems, called �-constraint problems,
by transforming all but one objectives into constraints. The
upper bounds of these constraints are given by the �-vector
and, by varying it, the exact Pareto front can theoretically
be generated. In practice, because of the high number of
subproblems and the difficulty to establish an efficient var-
iation scheme for the �-vector, this approach has mostly
been integrated within heuristic and interactive schemes.
It can however generate the exact Pareto front in particular
situations, such as BOCO problems, as we will see later.

This paper focuses on BOCO problems for which no
polynomial time algorithm exists for solving the corre-
sponding single objective problems, but where the latter
can still be efficiently solved through branch-and-cut.
Many problems share these characteristics, including the
Bi-Objective Covering Tour problem [16] and bi-objective
variants of the Traveling Salesman Problem (TSP), such
as the Bi-Objective Traveling Purchaser Problem [26] and
the Traveling Salesman Problem with Profits (TSPP) [11].
For these problems, �-constraint methods are particularly
attractive because the addition of new constraints through
a branch-and-cut procedure is quite natural.

The first contribution of this paper is to show the cor-
rectness of an efficient variant of the �-constraint method
for BOCO problems, where exactly one �-constraint prob-
lem is solved for each point on the Pareto front. The second
contribution is the introduction of heuristic improvements
based on the exploitation of information gathered from
previous problems that provides significant speed-ups.
The proposed method is then used to solve instances of
the TSPP, a variation of the TSP in which a profit or prize
value is associated with each vertex. We report the first
exact Pareto fronts for TSPP instances obtained from clas-
sical VRP and TSP instances available in the TSPLIB [25].

The paper is organized as follows. Our general problem-
solving approach is presented in Section 1. Then, Section 2
introduces the improvement heuristics. Section 3 describes
the TSPP and explains how our general algorithm can be
adapted to solve it. Finally, Section 4 reports computa-
tional results on several TSPP instances.
2. Exact �-constraint method for BOCO problems

The �-constraint method has been developed for general
multi-objective problems. It solves �-constraint problems
P kð�Þ obtained by transforming one of the objectives into
a constraint. For the bi-objective case, the problems
P 1ð�2Þ and P 2ð�1Þ are:

J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50 41
min f 1ð~xÞ; ð2Þ
subject to : ~x 2 X; ð3Þ

f 2ð~xÞ 6 �2 ð4Þ

and

min f 2ð~xÞ; ð5Þ
subject to : ~x 2 X; ð6Þ

f 1ð~xÞ 6 �1; ð7Þ

respectively.

Theorem 1. ~x� is an efficient solution of a BOCO problem if

and only if 9�2 such that~x� solves P 1ð�2Þ or 9�1 such that~x�

solves P 2ð�1Þ.

Theorem 2. If~x� solves P 1ð�2Þ or P 2ð�1Þ and if this solution is

unique, then~x� is an efficient solution of a BOCO problem.

Theorems 1 and 2 are proved for general multi-objective
problems (see [6,23]) and are therefore valid for BOCO
problems. These theorems mean that efficient solutions
can always be found by solving �-constraint problems, as
long as �2 is such that P 1ð�2Þ is feasible or �1 is such that
P 2ð�1Þ is feasible. Moreover, Theorem 1 indicates that for
any efficient solution ~x�, one can find an �j such that ~x�

solves P 1ð�jÞ or P 2ð�jÞ. In other words, the exact Pareto
front can be found by solving �-constraint problems, as
long as we know how to modify �j to generate at least
one solution for every point of F. This issue has recently
been addressed for the general multi-objective case in
[21], but it remains an important drawback of the �-con-
straint method. However, the particularities of BOCO
problems yield to a simple variation scheme for � that
can be numerically implemented. The idea is to construct
a sequence of �-constraint problems based on a progressive
reduction of �j. Let~zI ¼ ðzI

1; z
I
2Þ with

zI
1 ¼ min

~z2Z
z1 and zI

2 ¼ min
~z2Z

z2; ð8Þ

be the ideal point and let~zN ¼ ðzN
1 ; z

N
2 Þ with

zN
1 ¼ min

~z2Z
fz1 : z2 ¼ zI

2g and zN
2 ¼ min

~z2Z
fz2 : z1 ¼ zI

1g ð9Þ

be the Nadir point that defines lower and upper bounds on
the value of efficient solutions, respectively. Algorithm 1
finds the Pareto front of BOCO problems with integer
objective values through a sequence of �-constraint prob-
lems. Throughout the algorithm, �j is decreased by a con-
stant value D (currently set to 1). As explained later, D
may sometimes be larger to strengthen the �-constraint.
Note that a similar approach is used without proof in
[16] for the Bi-Objective Covering Tour problem.

Algorithm 1. Exact Pareto front of BOCO problems with
integer objective values:

1. Set i ¼ 1; j ¼ 2 or i ¼ 2; j ¼ 1.
2. Compute the ideal and Nadir points.
3. Set F ¼ fðzI

i ; z
N
j Þg and �j ¼ zN

j � D (D ¼ 1).
4. While �j P zI
j, do:

(a) Solve P ið�jÞ through branch-and-cut and add the
optimal solution value ðz�i ; z�j Þ to F.

(b) Set �j ¼ z�j � D.
5. Remove dominated points from F if required (as

explained later, some dominated points might be found
throughout this procedure).

This strategy is somehow related to ranking methods,

another exact problem-solving scheme for bi-objective
problems. The idea of ranking methods is to start from a
feasible solution ~x such that f1ð~xÞ ¼ zI

1 (or f2ð~xÞ ¼ zI
2) and

to find the second best, third best, . . . , feasible solutions
based on the first (or second) objective, until the Nadir
point in reached. Among the resulting solutions, there is
a set of efficient solutions that represent all points on the
Pareto front. This approach has been introduced in the
early 1980s to solve the bi-objective shortest path problem
[7]. It relies on k-best algorithms [22], which have been
developed for many problems such as the shortest path
and minimum spanning tree problems. To prove the cor-
rectness of Algorithm 1, we first state two lemmas similar
to those in [7]. However, the latter are specific to the short-
est path problem while our discussion takes place in the
context of general BOCO problems.

Lemma 1. ðzI
1; z

N
2 Þ 2F and ðzN

1 ; z
I
2Þ 2F.
Proof. Suppose that ðzI
1; z

N
2 Þ R F. Then, 9ðz1; z2Þ 2Z :

ðz1; z2Þ � ðzI
1; z

N
2 Þ. Thus according to Definition 1, either:

(1) z1 < zI
1 and z2 < zN

2 or
(2) z1 < zI

1 and z2 ¼ zN
2 or

(3) z1 ¼ zI
1 and z2 < zN

2 .

Since (1) and (2) contradict the definition of an ideal
point and because (3) contradicts the definition of a Nadir
point, then ðzI

1; z
N
2 Þ 2F. The proof that ðzN

1 ; z
I
2Þ 2F is

similar. h
Lemma 2. 8ðz1; z2Þ 2 Z, if ðz1; z2Þ 2F, then zI
1 6 z1 6 zN

1

and zI
2 6 z2 6 zN

2 .

Proof. By Lemma 1, ðzI
1; z

N
2 Þ 2F, thus it is non-domi-

nated. Since zI
1 ¼ min~z2Zz1, z1 P zI

1, 8ðz1; z2Þ 2F. Also, if
z2 > zN

2 , ðzI
1; z

N
2 Þ � ðz1; z2Þ and ðz1; z2Þ R F. Hence, z1 P zI

1

and z2 6 zN
2 , 8ðz1; z2Þ 2F. The proofs for z2 P zI

2 and
z1 6 zN

1 are similar. h

Lemma 2 defines a region of the objective space that
contains the Pareto front. Let us define the set

Zþ ¼ ðz1; z2Þ 2 Z : zI
1 6 z1 6 zN

1 and zI
2 6 z2 6 zN

2

� �
;

ð10Þ
which is depicted in Fig. 1 by the rectangular region formed
by the ideal and Nadir points. This region can be used to
characterize the interval of possible values for �j, that is

a b

Fig. 1. (a) Illustration of the dominance relation among elements of Zþ. (b) Illustration of two consecutive points in the sequence defined by Theorem 3.

42 J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50
½zI
j; z

N
j �, j ¼ 1; 2. Let �s

j be the sth value on this interval and
let us define the following subsets of Zþ:

Zþ�sj ¼ ~z 2 Zþ : zi ¼ fið~x�Þ
n

where ~x� is a solution of P ið�s
jÞ
o
: ð11Þ

Fig. 1 (a) depicts a typical point~z� ¼ a that minimizes the
second objective among the points of Zþ

�s
2
¼ fa; b; c; dg and

shows the preferred and dominated regions according to
this point (note that the preferred region is empty). If
~z� 2F, the other points of the Pareto front must be in
the two unidentified regions of Zþ. The correctness of
Algorithm 1 is shown by the following theorem.

Theorem 3. A sequence of �-constraint problems P ið�jÞ
defined by �1

j ; . . . ; �s
j; . . . ; �S

j where:

(a) �1
j ¼ zN

j , �S
j ¼ zI

j,

(b) �s
j ¼ ð~z�s�1Þj � D, with ~z�s�1 the value of a solution to

P ið�s�1
j Þ and D ¼ 1,

generates one feasible solution for each point of the Pareto

front.

Proof. Let ~z�1; . . . ;~z�s ; . . . ;~z�S be the sequence of solutions
corresponding to the sequence of �-constraint problems
defined by (a) and (b). Let us show that if
~z 2Z n f~z�1; . . . ;~z�s ; . . . ;~z�Sg, then ~z R F. Assume that there
is a solution ~z0 2Z n f~z�1; . . . ;~z�s ; . . . ;~z�jFjg such that
~z0 2F. By Lemma 2, zI

i 6 z0i 6 zN
i . Then, either:

(1) z0i ¼ ðz�s Þi (for a given s, s ¼ 1; . . . ; S), or
(2) ð~z�s�1Þi < z0i < ð~z�s Þi and ð~z�s�1Þj < z0j 6 ð~z�s Þj (for a given

s, s ¼ 1; . . . ; S).

In Case (1), z�j must be lower than ð~z�s Þj for ~z0 to be
efficient. But since D equals 1 and since the objective values
are integers, �j will eventually reach a value for which the
optimum of the corresponding �j-constraint problem is~z0,
that is~z0 2 f~z�sþ1; . . . ;~z�Sg, which contradicts the hypothesis.
Case (2) is impossible because ~z�s is the optimal value of
P ið�s�1

j � DÞ, with D ¼ 1 and integer objectives. h

Handling the dominated points. Because there might
exist many solutions to P ið�s

jÞ with different values for
objective j (i.e. jZþ�s

j
j > 1), some dominated points might

be generated by the sequence of �-constraint problems
defined by Theorem 3. For example, in Fig. 1(a), the
points b, c and d are dominated by point a. Nevertheless,
since all non-dominated points will be found, one can sim-
ply exclude the non-efficient solutions to obtain the exact
Pareto front, as it is done with the k-best solutions
obtained from ranking methods. Another possibility is
to solve both P 1ð�s

2Þ and P 2ð�s
1Þ (see Theorem 1). This

can be done implicitly by modifying the branch-and-cut
algorithm used to solve the �-constraint problems. Let ~z�s
be the optimal value for P ið�s

jÞ. Then, the lower bound
of all pending nodes in the branching tree are greater than
or equal to ð~z�s Þi, and other optimal solutions might be
found by processing the pending nodes with a lower
bound equal to ð~z�s Þi. Moreover, since a feasible solution
such that ð~z�s Þj 6 �s

j is known, �s
j can be decreased to

ð~z�s Þj � D. Doing so until no more feasible solution exists
will lead to a unique optimal solution for the strengthened
�-constraint problem, which satisfies Theorem 2. This
strategy reduces the number of subproblems to the exact
number of points on the Pareto front, but those problems
might be harder to solve.

The efficient set. A similar modification of the branch-
and-cut algorithm produces the efficient set in addition to
the Pareto front. The idea is to fathom only the nodes with
a lower bound strictly greater than the value of the best
known feasible solution. The value of �s

j should be updated
to the maximum of ð~z�Þj and �j, for each optimal value~z�s

J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50 43
found. Moreover, inequalities that cuts all known optimal
solutions must be added.

Approximation. One should also observe that the algo-
rithm can be modified to generate approximations of the
Pareto front while reducing the computation time. Since
the branch-and-cut procedure runs until the gap between the
best known feasible solution value (upper bound) and the
best linear relaxation value (lower bound) is reached, a
tolerance on this gap will produce approximate solutions
for the �-constraint problems and thus generate an approx-
imate Pareto front. As shown in Section 4, this strategy
significantly reduces the computation time while providing
good approximations of the Pareto front.

Strengthening the �-constraint. Until now, we have con-
sidered that the constant D equals 1, but in some cases, it
might be possible to use a larger value, which obviously
strengthens the �-constraint. We show that D can be set
to the greatest common divisor among the possible values
of objective j (Xj), assuming integer objective values.

Proposition 1. 8~z1, ~z2 2Z such that ð~z1Þj–ð~z2Þj,
jð~z1Þj � ð~z2ÞjjP Xj.

Proof. Suppose there exist some points~z1 and~z2 2 Z such
that jð~z1Þj � ð~z2Þjj < Xj, then

jð~z1Þj � ð~z2Þjj
Xj

< 1: ð12Þ

Since objective values are positive integers, the left-hand
side of Eq. (12) must be null. Therefore, ð~z1Þj ¼ ð~z2Þj which
contradicts the hypothesis. h
3. Improvement heuristics

The sequence of �-constraint problems is defined by a
progressive reduction of �j that leads to a progressive
increase in objective i. This suggests that the structure of
consecutive subproblems might be similar. In the following,
two classes of heuristics are proposed to take advantage
of these similarities in order to improve the branch-
and-cut algorithm when solving P ið�jÞ. Both heuristics
exploit information gathered from previous subproblems
to solve future subproblems faster. The first heuristic
exploits knowledge of the polytope, while the second one
improves the quality of the initial solution. Later on, we
will explain how those heuristics can be applied in the case
of the TSPP.

Exploiting knowledge of the polytope. The general princi-
ple underlying cutting-plane algorithms is to reduce the size
of the relaxed solution space by adding valid cuts. Due to
structural similarities between two consecutive �-constraint
problems, and since separation of violated inequalities is
often hard, it is quite natural to keep some constraints from
one P ið�jÞ problem to the next, as long as these constraints
remain valid. This can be implemented quite easily when the
branch-and-cut algorithm already maintains a cut-pool.
Typically, the latter contains inequalities that have been
removed to reduce the size of the model. Since previously
removed cuts can be violated again later on, they are kept
in a pool which is explored at the beginning of the separa-
tion phase . . .We thus suggest to initialize the cut-pool of
P ið�s

jÞ with the active cuts at the optimum of P ið�s�1
j Þ

(another way to manage a cut-pool is proposed in [26] for
the Bi-objective Traveling Purchaser Problem). Knowledge
of the polytope can also be exploited to generate valid
inequalities. In the next section, we describe an inequality
for the TSPP based on the optimal solution of the previous
problem.

Improving the initial feasible solution. Similarities
between consecutive solutions can be exploited by the heu-
ristic that generates the initial solution. A better initial
solution increases the upper bound on the optimal solution
value and thus allows to prune branches early and reduce
the number of explored nodes.
4. The Traveling Salesman Problem with Profits

To empirically validate our �-constraint method for
BOCO problems, we applied it to the TSPP. This section
describes the problem and explains how our �-constraint
method can solve it.
4.1. Problem description

Among the multiple variants of the TSP [14], the TSPP
belongs to the selective TSP class where a feasible solution
is not required to visit all vertices. We use the classification
in [11], where variants of the selective TSP in which values
are associated with vertices are considered to be TSPP. The
latter is a BOCO problem where two strongly conflicting
objectives must be optimized. Namely, one must find a
Hamiltonian cycle over a subset of vertices such that the
collected prize is maximized while the travel cost is mini-
mized. The prize collection maximization implies that the
traveler should visit a large number of vertices, while the
cost minimization has the opposite effect.

The scope of our discussion will be restricted to the
undirected TSPP which can be mathematically formulated
as follows. Let G ¼ ðV ;EÞ be an undirected complete
graph, with edge set E and vertex set V, among which ver-
tex 1 stands for the depot. The non-negative integer prizes
are denoted pv for each v 2 V (p1 ¼ 0). For every e 2 E, the
non-negative integer travel cost ce satisfies the triangle
inequality. We define EðSÞ ¼ fðu; vÞ 2 E : u 2 S, v 2 Sg
and dðSÞ ¼ fðu; vÞ 2 E : u 2 S, v R Sg for S � V , and
V ðT Þ ¼ fv 2 V : T \ dðfvgÞ–;g for T # E. We also define,
V 0 ¼ V n f1g and for each v 2 V , we write dðvÞ instead of
dðfvgÞ. The decision variables are:

xe ¼
1 if edge e is used

0 otherwise;

�

yv ¼
1 if vertex v is visited

0 otherwise:

�

44 J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50
Finally, we define yðSÞ ¼
P

v2Syv and pðSÞ ¼
P

v2Spv for
S # V , and xðT Þ ¼

P
e2T xe and cðT Þ ¼

P
e2T ce for T # E.

The TSPP can then be formulated as the following 0–1
integer linear program (LP):

max
X
v2V

pvyv; ð13Þ

min
X
e2E

cexe; ð14Þ

subject to :

xðdðvÞÞ ¼ 2yv ð8v 2 V Þ; ð15Þ
xðdðSÞÞP 2yv ð8S � V : 1 2 S; v 2 V n SÞ; ð16Þ
y1 ¼ 1; ð17Þ
xe 2 f0; 1g ð8e 2 EÞ; ð18Þ
yv 2 f0; 1g ð8v 2 V 0Þ: ð19Þ
The degree constraints (15) insure that a feasible solu-
tion goes exactly once through each visited vertex. The sub-
tour elimination constraints (SEC) (16) require that each
visited vertex v 2 V 0 of a feasible solution be reachable
from the depot by two edge-disjoint paths. Constraint
(17) forces the depot to be visited and constraints (18)
and (19) impose that all variables be 0–1. Note that the
model forces all feasible solutions to visit at least three ver-
tices. Since solutions with less than three vertices can be
easily found by explicit enumeration, we assume, without
loss of generality, that optimal solutions contain at least
three vertices.

In spite of its bi-objective nature, the literature focuses
on mono-criterion variants of the TSPP. Three variants
have been extensively studied up to now: the Profitable
Tour Problem (PTP), the Orienteering Problem (OP) and
the Prize Collecting TSP (PCTSP). The PTP, introduced
in [8], maximizes the difference between the collected prizes
and the travel cost; it is also known as the Simple Cycle
Problem [13]. In the OP, one must find a tour that maxi-
mizes the total collected prize while maintaining the travel-
ing cost under a fixed value. It has been introduced in a
study on orienteering competitions [29] and it is also
known as the Selective TSP [20] and as the Maximum Col-
lection Problem [17]. Finally, the PCTSP was introduced as
a model for scheduling the daily operations of a steel roll-
ing mill [3]. Given an undirected graph with edge costs and
node prizes, the aim of the PCTSP is to find a simple cycle
minimizing the total edge cost while collecting a minimum
total prize. The PCTSP is also known as the Quota TSP [1].

The bi-criteria nature of the TSPP has been considered
in [18] where the efficient set is approximated for prob-
lems with less than 25 vertices. This algorithm dates back
to 1988 and could be used to solve much larger problems
nowadays, but it remains a heuristic approach. To the
best of our knowledge, the bi-objective TSPP has never
been solved exactly. However, there is some literature
on exact algorithms for mono-criterion variants of the
TSPP which are mostly adaptations of branch-and-bound
procedures developed for the TSP (see [11] for a complete
survey).

4.2. Finding the exact Pareto front of the TSPP

The TSPP, as defined by Eqs. (13) to (19), is a BOCO
problem where both objectives take integer values. Theo-
rem 3 shows how to apply the �-constraint method to find
the exact Pareto front of such problems. One must first
decide which of the cost minimization or the collected prize
maximization should be kept in the objective. In other
words, one should decide if the �-constraint problems will
be OPs (collected prize maximization) or PCTSPs (cost
minimization). In this work, the PCTSP was chosen for a
number of reasons. First, an algorithm for solving the
PCTSP was already available to us. Second, the implemen-
tation of the �-constraint method is quite easy in this case.
The collected prize is set to 0 and is then gradually
increased up to a maximum value, which is the summation
of the price values over all vertices. In the case of the OP,
one must start with a cost that corresponds to the optimal
solution value of a TSP. Finally, when the greatest com-
mon divisor among all prize values is greater than 1, the
PCTSP formulation allows one to set D to a value greater
than one (see Proposition 1). By doing so, the minimum
prize constraint is strengthened by forcing its upper bound
(�) to be as close as possible to the collected prize of the
optimal PCTSP solution. In the case of the OP formula-
tion, a D value greater than one can hardly be considered,
as it requires the calculation of the greatest common divi-
sor among all possible Hamiltonian cycle costs.

The mathematical formulation of the PCTSP is similar
to the one for the TSPP (Eqs. (13) to (19)), except for the
first objective (13) which is replaced by the minimum col-
lected prize constraint:X
v2V

yvpv P �p; ð20Þ

where pv is the prize associated with vertex v and �p is a con-
stant corresponding to the minimum prize to be collected.
Eq. (20) can also be formulated asX
v2V

pvð1� yvÞ 6 U ; ð21Þ

where U ¼ pðV Þ � �p. This corresponds to the �-constraint
of P ið�jÞ, where �j is represented by U. The sequence of
PCTSPs starts with the worst �p value (�p ¼ 0). The latter
is then progressively increased until the largest possible va-
lue (�p ¼ pðV Þ) is reached. Note that when �p is null, the opti-
mal PCTSP solution stays at the depot. This zero cost
solution corresponds to the point (cI ; pN). On the other
hand, the point (cN ; pI) is associated with the PCTSP with
�p ¼ pðV Þ, which is a classical TSP.

The PCTSPs are efficiently solved through the branch-
and-cut procedure described in [5]. The latter has been
modified to generate a solution with the greatest collected
prize among the optimal solutions of P ið�jÞ, as explained

J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50 45
under Handling dominated points in Section 1. Thereby, the
number of PCTSPs to be solved is limited to the number of
points on the Pareto front. Our experiments show that this
actually reduces the number of subproblems by 10% on
average. However, because those subproblems are harder
to solve, we observe an increase of 159% in computation
time, on average. We thus decided to use the original ver-
sion of the branch-and-cut algorithm, since it is more effi-
cient overall.

From all the valid PCTSP inequalities used in this algo-
rithm (see Appendix A), only the cost-cover and condi-
tional inequalities are not guaranteed to be valid for any
�j. Both cuts are based on a set of vertices or on a cycle that
leads to solutions with a cost greater than the best known
feasible solution value. Since the sequence of P ið�jÞ prob-
lems is such that the solution values increase, the upper
bound for a subproblem is no longer valid for the next sub-
problems. That is, we do not separate the cost-cover and
conditional inequalities. The lifted-cover inequalities are
still valid in subsequent subproblems, although they lose
their strength because the cover might not remain minimal.
Cycle-cover inequalities also remain valid because the min-
imum collected prize increases from one subproblem to the
next. Simple comb, 2-matching and logical inequalities are
clearly valid for the whole sequence of PCTSPs.

The computation time of the branch-and-cut algorithm
that solves the PCTSPs can be substantially reduced by
using the heuristic improvements presented in Section 2.
In the following, we show how those heuristics have been
implemented.

Exploiting knowledge of the polytope. In addition to
reusing previously separated inequalities, the knowledge
of the polytope can be improved by adding the following
inequality. Since the minimum collected prize increases
from one subproblem to the next, at least one unvisited ver-
tex in P ið�s

jÞ must be visited in P ið�sþ1
j Þ. Hence, we have the

following valid visit inequality:

yðV n V �s ÞP 1; ð22Þ

where V �s is the set of visited vertices in an optimal solution
of P ið�s

jÞ. Such an inequality is added to the LP of each new
subproblem.

Improving the initial feasible solution. A good feasible
solution can be obtained through a modification to the
optimal solution of the previous �-constraint problem.
Adding any vertex to the optimal solution of P ið�s�1

j Þ actu-
ally produces a feasible solution to P ið�s

jÞ. Let ~x�s�1 be an
optimal solution to P ið�s�1

j Þ. Then, the following heuristic
procedure generates a feasible solution ~xs to P ið�s

jÞ:

1. Compute a feasible solution ~xs with the heuristic algo-
rithm used in [5] to find an initial feasible solution.

2. For every vertex v 2 V n V �s�1:
(a) Construct solution x̂s by inserting v in ~x�s�1 at a

location that minimizes the detour.
(b) If cð~xsÞ > cðx̂sÞ, set ~xs ¼ x̂s.
5. Computational results

We transformed VRP and TSP instances of the TSPLIB
[25] into TSPP instances using the rules provided in [5] and
[12]. We considered instances for which the node coordi-
nates were available. For VRP instances, the demands
are interpreted as the node prizes. For TSP instances, the
prizes pv ðv 2 V 0Þ are generated in three different ways:

� Generation 1: pv ¼ 1;
� Generation 2: pv ¼ 1þ ð7141vþ 73Þmod 100;
� Generation 3: pv ¼ 1þ 99

cð1;vÞ
h

� �
, where h ¼ maxw2V 0c1;w.

Instances of generation 1 are in general easy problems
since all prizes are the same and fixed to 1. Generation 2
produces instances with pseudo-random prizes between 1
and 100, while generation 3 produces hard problems where
larger prizes are associated with vertices that are further
from the depot. The greatest common divisor among the
prize values is equal to 1 in all those instances, except for
the VRP instances eil22, eil30 and eil33 (see Table 2), where
it is equal to 100, 25 and 10, respectively. The algorithm
was implemented in C++ and was run on a AMD Opteron
2.4 Ghz processor. The LPs were solved using CPLEX 9.3.

This section starts with the performance analysis of our
improvement heuristics before showing results for all
solved instances. Finally, we analyse the quality of the
approximate Pareto fronts obtained, as explained in Sec-
tion 1.

5.1. Performance of the improvement heuristics

Table 1 shows data on the performance of the improve-
ment heuristics on a sample of instances of different sizes
(the size is at the end of each instance identifier). The com-
putation times, in seconds, of the standard algorithm with-
out any improvement heuristic are given in column STD.
The three next columns give the relative improvement (in
percent) of the computation time due to each of the three
improvement heuristics:

� ACH: keep active cuts for subsequent subproblems,
� VSI: visit inequalities,
� ISH: initial solution heuristic.

The columns ALL and AIH give the computation time
and the relative improvement, respectively, when all three
improvement heuristics are enabled. For each instance,
the best improvement is identified in bold face.

The results show that keeping the active inequalities
from one PCTSP to the next significantly reduce the com-
putation time (33% in average). We have no strong evi-
dence that the visit inequalities reduce the computation
time, although a small improvement is observed on aver-
age. On five instances, however, the introduction of visit
inequalities slightly increases the computation time. Since
the improvement is sometimes around 10% while the

Table 1
Performance of the improvement heuristics

Instance Type STD ACH VSI ISH ALL AIH

eil33 vrp 85.41 24.39 3.47 11.57 54.89 35.73

eilA76 vrp 4528.03 20.88 12.04 23.14 2605.27 42.46

att48 tspp1 19.08 46.54 �1.00 2.31 9.82 48.53

eil76 tspp1 105.43 52.74 �0.16 24.92 37.19 64.73

rd100 tspp1 829.61 53.61 �0.85 7.32 365.53 55.94

pr144 tspp1 40002.63 50.63 8.06 15.47 17481.92 56.3

ch150 tspp1 10362.8 46.65 1.51 16.66 3706.72 64.23

ulysses22 tspp2 21.65 30.02 11.69 3.19 13.6 37.18

att48 tspp2 1215.76 15.14 2.08 2.00 866.16 28.76

berlin52 tspp2 1386.49 20.21 2.47 6.54 1321.63 4.68
eil76 tspp2 6508.44 18.26 2.47 8.3 5158.31 20.74

rd100 tspp2 79563.53 41.23 �0.81 6.88 43100.31 45.83

ulysses22 tspp3 21.27 28.40 8.04 1.41 14.04 33.99

att48 tspp3 1788.56 14.66 �3.01 1.67 1334.41 25.39

berlin52 tspp3 2276.94 24.77 0.79 1.88 1292.27 43.25

st70 tspp3 17528.77 38.02 0.17 5.75 9258.1 47.18

eil76 tspp3 7986.51 40.52 4.14 17.1 4971.95 37.75

Averages 33.33 3.01 9.18 40.75

Table 3
Statistics on the TSP generation 1 instances

Instance TIME jFj N �t rt L�5% S�50%

burma14 0.14 14 12 0.01 0.01 21.43 35.71
ulysses16 0.2 16 14 0.01 0.01 15.0 25.0
ulysses22 0.51 22 21 0.02 0.01 11.76 25.49
att48 9.82 48 47 0.21 0.15 14.56 24.75
eil51 10.53 51 50 0.21 0.29 23.84 13.49
berlin52 10.18 52 51 0.2 0.17 13.16 18.86
st70 61.57 70 69 0.89 1.71 36.09 6.11
eil76 37.19 76 75 0.5 0.59 21.65 18.93
pr76 175334.47 76 75 2337.79 10774.27 83.3 0.02
rat99 233.78 99 98 2.39 3.03 23.57 16.26
kroA100 341.15 100 99 3.45 4.81 23.22 9.18
kroB100 1075.63 100 99 10.86 33.79 54.69 2.55
kroC100 303.73 100 99 3.07 3.58 19.94 14.0
kroD100 178.9 100 99 1.81 2.53 23.41 11.1
kroE100 837.43 100 99 8.46 25.39 52.05 3.42
rd100 365.53 100 99 3.69 10.8 59.36 5.01
eil101 90.37 101 100 0.9 0.84 19.58 20.52
lin105 5558.73 105 104 53.45 152.07 61.17 1.66
pr107 74.12 107 106 0.7 0.76 20.67 16.99
pr124 2990.82 124 123 24.32 44.57 34.47 3.32
bier127 1073.62 127 126 8.52 18.13 43.96 6.68
ch130 719.24 130 129 5.58 12.87 42.61 6.25
pr136 64590.76 136 135 478.45 1627.46 68.69 0.13
gr137 3354.58 137 136 24.67 64.72 48.83 3.95
pr144 17481.92 144 143 122.25 675.57 80.94 1.56
ch150 3706.72 150 149 24.88 51.03 37.53 3.14
kroA150 81024.71 150 149 543.79 1066.54 39.86 1.52
kroB150 68089.94 150 149 456.98 1309.99 54.31 0.39
pr152 t.l. 93.38 – – – – –
u159 t.l. 39.87 – – – – –

46 J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50
computation times never increase by more than 3%, we
decided to keep them for the exhaustive tests reported later.
Using the solution of the previous PCTSP to find a feasible
initial solution for the next subproblem improves the com-
putation time by 1.4–24.9% (9.18% in average). Combining
the three heuristics almost always give the best results. Two
exceptions are reported in Table 1 where one should have
used only the ACH heuristic.

5.2. Results for exact Pareto fronts

Tables 2–5 show results for VRP instances and TSP gen-
eration 1, 2 and 3 instances, respectively. The three
improvement heuristics were enabled in all cases. There
are fewer instances in Tables 4 and 5, when compared with
Table 3, because TSP generation 2 and 3 instances are
more difficult to solve than generation 1 instances. The
reported results clearly show that the largest generation 2
and 3 instances cannot be addressed within the time limit.
We have thus decided to put aside instances with more than
130 vertices (8 instances). The columns correspond to:

� TIME: The total computation time, in seconds;
� jFj: the size of the Pareto front;
Table 2
Statistics on the VRP instances

Instance TIME jFj N �t rt L�5% S�50%

eil22 7.96 67 71 0.11 0.05 9.67 32.04
eil23 8.37 75 77 0.11 0.07 9.8 21.74
eil30 27.3 125 141 0.19 0.18 18.79 19.08
eil33 54.89 159 228 0.24 0.21 16.82 20.13
att48 11.47 48 47 0.24 0.2 15.34 22.58
eil51 539.6 223 254 2.12 2.28 21.65 16.36
eilA76 2605.27 355 458 5.69 7.15 24.62 14.6
eilA101 5046.78 498 701 7.2 9.7 27.13 10.39
gil262 t.l. 29.48 – – – – –
� N: the number of �-constraint problems solved;2

� �t: the average computation time of the �-constraint
problems;
� rt: the standard deviation of the �-constraint problems’

computation time;
� L�5%: the percentage of the computation time spent on

the 5% harder problems;
� S�50%: the percentage of the computation time spent

on the 50% easier problems.

The letters t.l. (time limit) indicates that the instance was
still unsolved after a time limit of 72 hours (259,200 sec-
onds). For those instances, the column jFj gives the ratio
a ¼ �p

pðV Þ, which is an indication of the portion of the Pareto

front that has been found before the time limit was reached.
Our algorithm was able to solve instances of 150 vertices

for easy instances (TSP generation 1) and up to about 100
vertices for harder instances. Among those that remained
unsolved after 72 hours, 39% were almost solved
(a > 0:8) while there was still a lot to do for 28% of them
(a < 0:2). Observe that the latter are all very hard instances
(TSP generation 3).
2 The �-constraint problems are PCTSPs that visit at least three vertices.
The trivial solutions containing 1 or 2 vertices are found by enumeration
and are therefore not included in N.

Table 4
Statistics on the TSP generation 2 instances

Instance TIME jFj N �t rt L�5% S�50%

burma14 1.73 59 60 0.03 0.02 15.03 27.17
ulysses16 4.31 102 101 0.04 0.02 10.21 34.8
ulysses22 13.6 130 130 0.1 0.05 9.78 32.65
att48 866.16 435 438 1.98 1.21 13.1 26.85
eil51 627.13 225 269 2.33 2.26 19.24 16.81
berlin52 1321.63 406 411 3.22 2.75 15.97 16.84
st70 13892.93 503 643 21.61 38.21 34.48 4.53
eil76 5158.31 386 538 9.59 10.81 22.45 16.28
pr76 t.l. 96.29 – – – – –
rat99 31524.89 662 779 40.47 76.59 38.31 11.11
kroA100 t.l. 87.88 – – – – –
kroB100 186395.45 1332 1363 136.75 337.95 50.42 7.33
kroC100 120664.66 1311 1333 90.52 129.24 29.95 18.99
kroD100 53819.04 1128 1129 47.67 33.95 15.43 25.2
kroE100 82149.58 1068 1086 75.64 119.62 32.46 9.26
rd100 43100.31 920 962 44.8 30.01 14.31 26.92
eil101 34953.71 515 838 41.71 45.84 21.87 13.5
lin105 203727.18 1043 1329 153.29 291.15 36.25 10.71
pr107 t.l. 49.36 – – – – –
pr124 t.l. 29.24 – – – – –
bier127 t.l. 87.65 – – – – –
ch130 t.l. 93.87 – – – – –

Table 5
Statistics on the TSP generation 3 instances

Instance TIME jFj N �t rt L�5% S�50%

burma14 1.99 70 68 0.03 0.01 9.05 31.16
ulysses16 3.81 92 88 0.04 0.02 9.45 32.28
ulysses22 14.04 128 126 0.11 0.05 10.19 31.98
att48 1334.41 438 440 3.03 1.83 13.01 26.95
eil51 1196.46 267 299 4.0 6.16 29.71 10.51
berlin52 1292.27 439 446 2.9 2.12 15.61 24.26
st70 9258.1 452 546 16.96 17.35 19.27 12.52
eil76 4971.95 383 468 10.62 8.87 16.68 20.9
pr76 t.l. 82.52 – – – – –
rat99 t.l. 5.70 – – – – –
kroA100 137168.33 815 820 167.28 209.37 25.77 13.12
kroB100 t.l. 16.75 – – – – –
kroC100 128195.9 1223 1228 104.39 106.56 20.87 17.14
kroD100 71826.93 1063 1068 67.25 73.97 20.6 24.61
kroE100 t.l. 10.38 – – – – –
rd100 180959.84 1513 1551 116.67 428.34 65.3 6.9
eil101 38227.19 499 697 54.85 92.39 33.78 7.62
lin105 t.l. 9.77 – – – – –
pr107 t.l. 2.16 – – – – –
pr124 t.l. 3.66 – – – – –
bier127 t.l. 16.09 – – – – –
ch130 t.l. 88.35 – – – – –

3 This corresponds to an average of the best relative Chebyshev
distances. The latter defines the distance between the points ðx1; y1Þ and
ðx2; y2Þ as: maxðjx2 � x1j; jy2 � y1jÞ.

J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50 47
Two factors characterize hard TSPP instances: the size of
the Pareto front and the difficulty of the subproblems
(PCTSPs). An empirical evidence of the first factor is a cor-
relation coefficient of 0.74 between the size of the Pareto
front and the total computation time. We observed that all
instances solved in more than 24 hours are from generations
2 and 3 (except for one), which is not a surprise since both
generations are designed to produce instances with a lot of
efficient solutions. On average, the ratio of jFj over the num-
ber of vertices is 8.08 and 7.84 for generations 2 and 3, respec-
tively, while it is 1.0 for generation 1 and 3.78 for VRP instances.

The impact of the subproblems’ toughness on the com-
putation time is partially shown by a correlation coefficient
of 0.51 between the average subproblem computation time
and the total computation time. Although this correlation
is significant, it does not tell the whole story. One should
observe that the subproblems are not equally hard. In fact,
the computation times are mostly due to a few PCTSPs.
This phenomenon is observed on hard instances with a rel-
atively small Pareto front (that is, the latter cannot explain
the instance’s toughness), such as pr76, kroA150, kroB150

and pr136 generation 1 instances. The rt statistic of those
instances is very high and 40% to 83% of the computation
time is spent on 5% of the subproblems. Moreover, less
than 2% of the computation is spent on 50% of the sub-
problems (0.02% for pr76 instance).
5.3. Results for approximate Pareto fronts

As explained in Section 1, our algorithm can produce an
approximation of the Pareto front. One simply has to
introduce a tolerance (q) on the minimal gap between the
upper and lower bound for a solution to be accepted by
the branch-and-cut procedure. Tables 6 and 7 show results
for q values of 0.01 and 0.10, respectively, on a sample of
hard instances for which the exact Pareto front is known.

There is no consensus on the quality metrics that should
be used for multi-criteria approximation algorithms. We
decided to use two categories of metrics reported in [15].
The first category is made of distance based metrics while
the second is made of ratios on the size of the exact and
approximated Pareto fronts. More precisely, the columns
of Tables 6 and 7 correspond to:

� te: computation time for the exact Pareto front (F);
� ta: computation time for the approximate Pareto front

(F);
� dp ¼ 1

jFj
P

z2Fminz02F
jzp�z0p j

zp
, where zp stands for the col-

lected prize associated with point z;
� dc ¼ 1

jFj
P

z2Fminz02F
jzc�z0cj

zc
, where zc stands for the travel

cost associated with point z;

� dz ¼ 1
jFj
P

z2Fminz02F max
jzp�z0p j

zp
;
jzc�z0cj

zc

� �
;3

� dmax
z ¼ maxz2Fminz02F max

jzp�z0p j
zp

;
jzc�z0c j

zc

� �
;

� Q1 ¼ F\F
jFj ;

� Q2 ¼ F\F
jFj

.

The last column I � in both Tables is the �-indicator met-
ric reported in [31]. It gives the minimum factor � by which
any objective vector in the Pareto front should be multi-
plied to become weakly dominated by at least one objective

Table 6
Results for approximate Pareto fronts with q ¼ 0:01

Instance Type te ta ta=te dp dc dz dmax
z Q1 Q2 I�

eilA76 vrp 2605.27 734.63 0.282 0.001 0.002 0.002 0.026 0.603 0.903 1.010
eilA101 vrp 5046.78 1847.79 0.366 0.001 0.001 0.001 0.010 0.538 0.736 1.010
pr76 tspp1 175334.47 28747.08 0.164 0.000 0.002 0.002 0.010 0.461 0.461 1.010
pr136 tspp1 64590.76 4742.81 0.073 0.000 0.001 0.002 0.009 0.500 0.504 1.010
pr144 tspp1 17481.92 5819.35 0.333 0.000 0.001 0.002 0.019 0.465 0.479 1.010
kroA150 tspp1 81024.71 2516.27 0.031 0.000 0.002 0.003 0.010 0.253 0.253 1.010
kroB150 tspp1 68089.94 22744.47 0.334 0.000 0.002 0.003 0.010 0.407 0.407 1.010
st70 tspp2 13892.93 1061.9 0.076 0.001 0.001 0.002 0.018 0.475 0.685 1.010
kroB100 tspp2 186395.45 8089.15 0.043 0.001 0.001 0.002 0.029 0.261 0.645 1.010
kroC100 tspp2 120664.66 5988.84 0.050 0.001 0.001 0.002 0.041 0.250 0.659 1.010
rd100 tspp2 43100.31 3712.49 0.086 0.001 0.001 0.002 0.032 0.262 0.623 1.010
lin105 tspp2 203727.18 31861.07 0.156 0.001 0.001 0.002 0.081 0.320 0.742 1.010
st70 tspp3 9258.1 2192.75 0.237 0.002 0.001 0.003 0.032 0.473 0.751 1.010
kroA100 tspp3 137168.33 17569.18 0.128 0.002 0.001 0.003 0.050 0.329 0.786 1.008
kroD100 tspp3 71826.93 12683.36 0.177 0.002 0.001 0.003 0.039 0.249 0.639 1.010
rd100 tspp3 180959.84 33950.47 0.188 0.002 0.001 0.003 0.143 0.171 0.617 1.009
eil101 tspp3 38227.19 10434.01 0.273 0.001 0.002 0.002 0.017 0.439 0.709 1.010

Averages 0.176 0.001 0.001 0.002 0.034 0.380 0.623 1.010

Table 7
Results for approximate Pareto fronts with q ¼ 0:10

Instance Type te ta ta=te dp dc dz dmax
z Q1 Q2 I�

eilA76 vrp 2605.27 22.83 0.009 0.007 0.008 0.019 0.211 0.085 0.345 1.063
eilA101 vrp 5046.78 83.48 0.017 0.005 0.004 0.014 0.141 0.084 0.228 1.074
pr76 tspp1 175334.47 17.67 0.000 0.002 0.008 0.028 0.083 0.118 0.122 1.067
pr136 tspp1 64590.76 354.62 0.005 0.001 0.005 0.017 0.070 0.206 0.215 1.062
pr144 tspp1 17481.92 599.07 0.034 0.002 0.007 0.018 0.050 0.139 0.157 1.057
kroA150 tspp1 81024.71 164.27 0.002 0.002 0.006 0.020 0.083 0.073 0.078 1.060
kroB150 tspp1 68089.94 367.13 0.005 0.000 0.006 0.018 0.083 0.127 0.129 1.058
st70 tspp2 13892.93 39.33 0.003 0.007 0.006 0.018 0.113 0.074 0.272 1.069
kroB100 tspp2 186395.45 163.33 0.001 0.004 0.004 0.014 0.178 0.035 0.208 1.064
kroC100 tspp2 120664.66 224.53 0.002 0.006 0.005 0.015 0.155 0.039 0.291 1.072
rd100 tspp2 43100.31 1623.16 0.009 0.006 0.003 0.014 0.243 0.052 0.226 1.068
lin105 tspp2 203727.18 528.95 0.003 0.005 0.005 0.025 0.068 0.023 0.122 1.094
st70 tspp3 9258.1 460.18 0.050 0.007 0.004 0.022 0.143 0.084 0.297 1.061
kroA100 tspp3 137168.33 1211.63 0.009 0.008 0.005 0.015 0.356 0.058 0.333 1.051
kroD100 tspp3 71826.93 1894.98 0.026 0.006 0.004 0.016 0.125 0.027 0.149 1.053
rd100 tspp3 180959.84 1623.16 0.009 0.006 0.003 0.013 0.143 0.032 0.214 1.055
eil101 tspp3 38227.19 1805.84 0.047 0.007 0.006 0.019 0.113 0.066 0.234 1.068

Averages 0.012 0.005 0.006 0.018 0.138 0.078 0.213 1.064

48 J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50
vector in the approximated front. Note that the indicator
value was computed by replacing maximization of the col-
lected prize with minimization of the difference between the
total prize value over all vertices minus the collected prize
(since minimization and maximization cannot be mixed).

For q ¼ 0:01, the algorithm is 5.7 times faster than the
original exact version. It produces a very good approxima-
tion of the Pareto front for every instance of the sample.
Even though only an average of 38% of the non-dominated
points are found, each non-dominated point is on average
at a distance of 0.002 of a point on the approximated front,
according to the relative Chebyshev distance metric. When
the tolerance is increased to 0.10, the algorithm runs 83
times faster than the original version and still finds a good
approximation of the Pareto front. The average relative
Chebyshev distance between each point of F and the near-
est point of F is 0.018.
One should observe that for both values of q, Q1 is
always lower than Q2. For example, an average of 38.0%
and 62.3% of the points on F are also on F when
q ¼ 0:01 and q ¼ 0:10, respectively. This suggests that the
approximated non-dominated set is smaller than the exact
one. Actually, the size of the approximated front corre-
sponds to 50.5% (q ¼ 0:01) and 22.3% (q ¼ 0:10) of jFj,
on average. Those averages exclude TSP generation 1
instances for which both the exact and approximate fronts
have about the same size. Although there is no theoretical
guarantee on the performance of the approximation algo-
rithm, the results show relatively small variations in dz. This
suggests that the strategy is quite robust. Finally, the �-indi-
cator value is clearly related to the q value. This is not a sur-
prise given that the latter is the tolerance on the gap between
the solution upper and lower bounds, thus defining how
close approximate solutions are from optimal solutions.

J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50 49
6. Conclusion

We have shown that the �-constraint method can be
used efficiently to find the exact Pareto front of BOCO
problems with integer objective values. We also provide
improvement heuristics devised to speed up the resolution
of the �-constraint problems when the latter are solved
through branch-and-cut. Our �-constraint method and
the improvement heuristics have been tested successfully
on the TSPP. The results have shown the relevance of the
improvement heuristics and provided the first exact solu-
tions for TSPP instances. Because the TSPP is a very hard
problem, the instances that have been solved are quite
small. Obviously, exact algorithms cannot run very fast
on BOCO problems, but we believe that our solutions will
be useful benchmarks to evaluate the quality of future
approximation algorithms for the TSPP. Besides, we have
shown that good approximations of the Pareto front might
be found relatively quickly through a simple modification
of our exact algorithm.

Acknowledgements

Financial support for this work was provided by the
Canadian Natural Sciences and Engineering Research
Council (NSERC) and by the Fonds Québécois de la
Recherche sur la Nature et les Technologies (FQRNT).
This support is gratefully acknowledged.

Appendix A. Valid inequalities for the PCTSP

This appendix summarizes the valid inequalities used by
the branch-and-cut algorithm presented in [5] for the model
defined by Eqs. (14) to (20). They are obtained either from
the associated knapsack polytope, from a combination of
the SECs and the minimum prize constraint, or from the
associated traveling salesman polytope.

A.1. Inequalities from the associated knapsack polytope

Two types of inequalities based on knapsack constraints
are considered. They are referred as the lifted-cover and
cost-cover inequalities.

A.1.1. Lifted-cover inequalities

Let S be a minimal cover for (21), i.e., S is a minimal
subset of V such that pðSÞ > U . The cover inequality:X
v2ðS[S0Þ

ð1� yvÞ 6 jSj � 1; ð23Þ

where S 0 ¼ fv 2 V n S : pv P maxw2Spwg, is valid for the
knapsack problem [2]. The coefficients of the y variables
can be lifted to obtain lifted-cover inequalities that rein-
force Eq. (23). Let S0 ¼ fv 2 V n S : pv P maxw2Spwg, and
Sh the set of the first h elements of S (8i 2 S, pi P piþ1 is
assumed), h ¼ 1; . . . ; jSj. Let V be partitioned into
V 0; V 1; . . . ; V q, q ¼ jSj � 1, where:
V h ¼ fv 2 ðS [S0Þ : pðShÞ 6 pv < pðShþ1Þg; h ¼ 2; . . . ; q

V 1 ¼ ðS [S0Þ n [q
h¼2V h;

V 0 ¼ V n ðS [S0Þ
ð24Þ

and define:

pv ¼ h; 8v 2 V h; h ¼ 0; . . . ; q: ð25Þ

Then, the lifted-cover inequality is written:X
v2S

ð1� yvÞ þ
X

v2V nS
pvð1� yvÞ 6 jSj � 1: ð26Þ

It has been shown that (26) is valid for all y 2 KP , where
KP is the convex hull of fy 2 f0; 1g : y satisfies ð21Þg [2].
Since the PCTS polytope is included in KP [3], the lifted-
cover inequalities are also valid for the PCTSP.

A.1.2. Cost-cover inequalities

Let cU be the upper bound on an optimal solution. ThenP
e2Ecexe 6 cU defines a knapsack constraint in terms of

costs that can be used to derive valid inequalities. Let
S # V , 1 2 S and rS a lower bound on the optimal TSP
value on S. Then, if rS > cU and if the costs satisfy the tri-
angle inequality, the following cost-cover inequalities are
valid for the PCTSP. We consider only special cases that
are easy to separate, namely, when jSj ¼ 3:

yu þ yv 6 1 8u; v 2 V 0

such that cð1;uÞ þ cðu;vÞ þ cðv;1Þ > cU ð27Þ

and when jSj ¼ 2:

yv ¼ 0 8v 2 V 0 such that 2cð1;vÞ > cU : ð28Þ
A.2. Inequalities from the SEC and knapsack constraint

Cycle-cover and conditional inequalities both use a knap-
sack constraint to strengthen the SEC (16).

A.2.1. Cycle-cover inequalities

The cycle-cover inequalities exploit the minimum prize
constraint and the fact that a feasible solution must be a
cycle. Let S � V , 1 2 S such that pðSÞ < �p, then

xðEðSÞÞ 6 yðSÞ � 1 ð29Þ

is a valid inequality for the PCTSP, as shown in [5].

A.2.2. Conditional inequalities
An upper bound cU on the objective value can be used to

derive inequalities similar to the cycle-cover, but based on
the selected edges. Although they are not guaranteed to be
valid, these inequalities can be conditionally used in a cut-
ting-plane context. Let T # E such that cðT Þ > cU , then

xðT Þ 6 yðV ðT ÞÞ � 1 ð30Þ

is valid for the PCTSP if no feasible solution of value lower
than cU is contained in T, since xðT Þ 6 yðV ðT ÞÞ holds for

50 J.-F. Bérubé et al. / European Journal of Operational Research 194 (2009) 39–50
every feasible solution. This occurs, in particular, when T

defines a simple cycle that goes through the depot and
for which cðT Þ > cU .

A.3. Comb inequalities

The well known comb inequalities can be adapted from
the TSP to the PCTSP [4]. Let us consider two sets of ver-
tices, the handle H � V and the teeth T j � V (j ¼ 1; . . . ; t).
The general comb inequalities are formulated as:

xðEðHÞÞ þ
Xt

j¼1

xðEðT jÞÞ 6 yðHÞ þ
Xt

j¼1

jT jj �
3t þ 1

2
ð31Þ

for all H, T 1, . . ., T t satisfying:

(a) jT j \ H jP 1, with j ¼ 1; . . . ; t;
(b) jT j n H jP 1, with j ¼ 1; . . . ; t;
(c) T i \ T j ¼ ;, with 1 6 i < j 6 t; and
(d) t P 3 and odd.

In the special case where jT j \ H j ¼ 1 for all j, the
inequalities are referred to as simple comb inequalities. Sim-
ple comb inequalities become 2-matching inequalities if
jT j n H j ¼ 1 for all j.

A.4. Logical inequalities

Obviously, if an edge e 2 dðvÞ is part of a solution, the
vertex v must be visited, hence the following logical
inequality:

xe 6 yv 8e 2 dðvÞ; v 2 V 0: ð32Þ
References

[1] B. Awerbuch, Y. Azar, A. Blum, S. Vempala, New approximation
guarantees for minimum-weight k-trees and prize-collecting salesman,
SIAM Journal on Computing 28 (1998) 254–262.

[2] E. Balas, Facets of the knapsack polytope, Mathematical Program-
ming 8 (1975) 146–164.

[3] E. Balas, The prize collecting traveling salesman problem, Networks
19 (1989) 621–636.

[4] E. Balas, The prize collecting traveling salesman problem: II.
Polyhedral results, Networks 25 (1995) 199–216.

[5] J.-F. Bérubé, M. Gendreau, J.-Y. Potvin, A branch-and-cut algorithm
for the undirected prize collecting traveling salesman problem,
Technical Report CRT-2006-30, Centre for Research on Transpor-
tation, Université de Montréal, 2006.

[6] V. Chankong, Y.Y. Haimes, Multiobjective Decision Making: Theory
and Methodology, North-Holland, 1983.

[7] J.C.N. Clı́maco, E.Q.V. Martins, A bicriterion shortest path algo-
rithm, European Journal of Operational Research 11 (1982) 399–404.

[8] M. Dell’Amico, F. Maffioli, P. Värbrand, On prize-collecting tours
and the asymmetric travelling salesman problem, International
Transactions in Operational Research 2 (1995) 297–308.

[9] M. Ehrgott, X. Gandibleux, Multiobjective combinatorial optimiza-
tion – theory, methodology, and applications, in: M. Ehrgott, X.
Gandibleux (Eds.), Multiple Criteria Optimization: State of the Art
Annotated Bibliographic Surveys, Kluwer Academic Publishers,
2002, pp. 369–444.
[10] M. Ehrgott, M.M. Wiecek, Multiobjective programming, in: J.
Figueira, S. Greco, M. Ehrgott (Eds.), Multiple Criteria Decision
Analysis: State of the Art Surveys, Kluwer Academic Publishers,
2005, pp. 667–722.

[11] D. Feillet, P. Dejax, M. Gendreau, Traveling salesman problems with
profits, Transportation Science 39 (2005) 188–205.

[12] M. Fischetti, J.J. Salazar-González, P. Toth, Solving the orienteering
problem through branch-and-cut, INFORMS Journal on Computing
10 (1998) 133–148.

[13] M. Fischetti, J.J. Salazar-González, P. Toth, The generalized travel-
ing salesman and orienteering problems, in: G. Gutin, A.P. Punnen
(Eds.), The Traveling Salesman Problem and its Variations, Kluwer
Academic Publishers, 2002, pp. 609–662.

[14] G. Gutin, A.P. Punnen (Eds.), The Traveling Salesman Problem and
its Variations, Kluwer Academic Publishers, 2002.

[15] A. Jaszkiewicz, Evaluation of multiple objective metaheuristics, in: X.
Gandibleux, M. Sevaux, K. Sörensen, V. T’kindt (Eds.), Metaheu-
ristics for Multiobjective Optimization, Springer-Verlag, 2004, pp.
65–89.

[16] N. Jozefowiez, F. Semet, E.-G. Talbi. The bi-objective covering tour
problem, Computers and Operations Research 34 (2007) 1929–
1942.

[17] S. Kataoka, S. Morito, An algorithm for single constraint maximum
collection problem, Journal of the Operations Research Society of
Japan 31 (1988) 515–530.

[18] C.P. Keller, M.F. Goodchild, The multiobjective vending problem: A
generalization of the travelling salesman problem, Environment and
Planning B: Planning and Design 15 (1988) 447–460.

[19] P. Kouvelis, S. Sayin, Algorithm robust for the bicriteria discrete
optimization problem: Heuristic variations and computational evi-
dence, Annals of Operations Research 147 (2006) 71–85.

[20] G. Laporte, S. Martello, The selective travelling salesman problem,
Discrete Applied Mathematics 26 (1990) 193–207.

[21] M. Laumanns, L. Thiele, E. Zitzler, An efficient, adaptative param-
eter variation scheme for metaheuristics based on the epsilon-
constraint method, European Journal of Operational Research 169
(2006) 932–942.

[22] E.L. Lawler, A procedure for computing the K best solutions to
discrete optimization problems and its application to the shortest path
problem, Management Science 18 (1972) 401–405.

[23] K.M. Miettinen, Nonlinear Multiobjective Optimization, Kluwer
Academic, 1999.

[24] T.K. Ralphs, M.J. Saltzman, M.M. Wiecek, An improved algorithm
for solving biobjective integer programs, Annals of Operations
Research 147 (2006) 43–70.

[25] G. Reinelt, TSPLIB, A traveling salesman problem library, ORSA
Journal on Computing 3 (1991) 376–384.

[26] J. Riera-Ledesma, J.J. Salazar-González, The biobjective travelling
purchaser problem, European Journal of Operational Research 160
(2005) 599–613.

[27] S. Sayin, P. Kouvelis, The multiobjective discrete optimization
problem: A weighted min-max two-stage optimization approach
and a bicriteria algorithm, Management Science 51 (2005) 1572–
1581.

[28] R.E. Steuer, L.R. Gardiner, J. Gray, A bibliographic survey of the
activities and international nature of multiple criteria decision
making, Journal of Multi-Criteria Decision Analysis 5 (1996) 195–
217.

[29] T. Tsiligirides, Heuristic methods applied to orienteering, Journal of
the Operational Research Society 35 (1984) 797–809.

[30] E.L. Ulungu, J. Teghem, The two-phases method: An efficient
procedure to solve bi-objective combinatorial optimization problems,
Foundations of Computing and Decision Sciences 20 (1995) 149–165.

[31] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V. Grunert
da Fonseca, Performance assessment of multiobjective optimizers: An
analysis and review, IEEE Transactions on Evolutionary Computa-
tion 7 (2003) 117–132.

	An exact \epsilon -constraint method for bi-objective combinatorial optimization problems:
	Introduction
	Exact \epsilon -constraint method for BOCO problems
	Improvement heuristics
	The Traveling Salesman Problem with Profits
	Problem description
	Finding the exact Pareto front of the TSPP

	Computational results
	Performance of the improvement heuristics
	Results for exact Pareto fronts
	Results for approximate Pareto fronts

	Conclusion
	Acknowledgements
	Valid inequalities for the PCTSP
	Inequalities from the associated knapsack polytope
	Lifted-cover inequalities
	Cost-cover inequalities

	Inequalities from the SEC and knapsack constraint
	Cycle-cover inequalities
	Conditional inequalities

	Comb inequalities
	Logical inequalities

	References

