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Abstract

Most of the models for vehicle routing reported in the literature assume constant travel times. Clearly, ignoring the

fact that the travel time between two locations does not depend only on the distance traveled, but on many other factors

including the time of the day, impact the application of these models to real-world problems. In this paper, we present a

model based on time-dependent travel speeds which satisfies the ‘‘first-in–first-out’’ property. An experimental evalu-

ation of the proposed model is performed in a static and a dynamic setting, using a parallel tabu search heuristic. It is

shown that the time-dependent model provides substantial improvements over a model based on fixed travel times.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The routing and scheduling of a fleet of vehicles

to service customers plays an important role in the

distribution chain. This research domain has thus

been widely studied in the literature (see for ex-
ample, the survey in Ball et al. (1995)). However,

there is still a lack of modeling approaches that

more closely represent real-life conditions. One

practical aspect that has seldom been addressed is

the time dependency of travel times on the time of

the day. Many available models assume that the

travel times are constant throughout the day or

exploit simple procedures to adjust them, like

multiplier factors associated with different periods

of the day. Unfortunately, these assumptions are

weak approximations of the real-world conditions

where travel times are subject to more subtle vari-

ations over time. These variations may result from
predictable events (e.g., congestion during peak

hours) or from unpredictable events like accidents,

vehicle breakdowns, and others. Therefore, the

optimal solution to a formulation of the problem

that assumes constant travel times may be subop-

timal or even infeasible for the time-dependent

problem (e.g., if time windows are considered).

Time-dependent vehicle routing problems have
seldom been addressed because they are harder to

model and to solve. These problems can be stated

as follows. Let us assume that a fixed size fleet of m

identical vehicles of fixed capacity is available to

European Journal of Operational Research 144 (2003) 379–396

www.elsevier.com/locate/dsw

*Corresponding author. Tel.: +1-514-343-7093; fax: +1-514-

343-7121.

E-mail address: potvin@iro.umontreal.ca (J.-Y. Potvin).

0377-2217/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0377-2217 (02 )00147-9

mail to: potvin@iro.umontreal.ca


service customers (nodes) with fixed demand and

that the time horizon is partitioned into p time

intervals T1; T2; . . . ; Tp. Given a network of n

nodes, a n� n time-dependent matrix CðTkÞ ¼
½cijðTkÞ� contains the travel times between each pair
of nodes ði; jÞ when the vehicle departs from node i
within time interval Tk; k ¼ 1; 2; . . . ; p. The goal is
to find a set of minimum cost vehicle routes that

service every customer, such that:

• Each vehicle route originates from and termi-

nates at a fixed depot.

• Each vehicle services one route and the service

point of each request is visited once by exactly
one vehicle.

• The capacity of each vehicle is not exceeded and

the demand of each customer is satisfied.

Furthermore, each service point i (including the

depot) may have its own time window ½ei; li�, where
ei is the earliest service time and li is the latest

service time. When the service points have ‘‘soft’’
time windows, a vehicle can arrive before the lower

bound or after the upper bound. If the vehicle is

too early, it must wait to start its service; if the

vehicle is too late, a penalty for lateness is incurred

in the objective function.

The problem considered here is motivated from

a courier service application found in the local

operations of long-distance shipping services,
where parcels and envelopes are collected at dif-

ferent customers� locations and brought back to a
central office for further processing and ship-

ping. In this case, the service points have ‘‘soft’’

time windows, but each route must start and end

within the time window associated with the depot.

Also, no capacity constraint is enforced since only

small items are transported. The cost to be mini-
mized is a weighted sum of the total travel time

over all routes, plus the total lateness over all

customers. A time-dependent model for predict-

able variations in travel times is proposed and

analyzed in this context. It is implemented in a

static environment where the customer requests

are known in advance (i.e., before the routes are

constructed), and in a dynamic environment where
new customer requests are unveiled as the routes

are executed.

This paper is organized as follows. Section 2

presents a brief literature review dedicated to time-

dependent vehicle routing and two other problems

closely related to it, the time-dependent shortest

path and the path choice problems. Section 3

presents our time-dependent model and discusses
several issues related to it. Section 4 briefly intro-

duces a tabu search heuristic developed by Taillard

et al. (1997) for a version of the problem with fixed

travel times and explains how it was modified to

account for time-dependency. Section 5 reports

experimental results obtained with the new algo-

rithm in a static context. Section 6 addresses the

dynamic version of the problem. Finally, Section 7
concludes and proposes future avenues of re-

search.

2. Literature review

The only papers that we are aware of in the

literature of time-dependent vehicle routing are the
ones of Malandraki (1989), Malandraki and Da-

skin (1992), Hill and Benton (1992) and Maland-

raki and Dial (1996). Malandraki (1989, 1992)

examine both the time-dependent vehicle routing

problem (TDVRP), and the time-dependent trav-

eling salesman problem (TDTSP) which is a spe-

cial case of the TDVRP when the fleet size is equal

to one. They provide mixed integer linear pro-
gramming formulations which include time win-

dows, capacities and allow for waiting at a

customer location. The travel times are computed

using step functions. Nearest-neighbor (greedy)

heuristics for the TDTSP and the TDVRP without

time windows are proposed, as well as a branch-

and-cut algorithm for solving small problems

with 10–25 nodes. In Malandraki and Dial (1996),
a dynamic programming algorithm is proposed

to solve the TDTSP. Although it is argued that

many different types of travel time functions

can be handled by this algorithm, results are only

reported for step functions like those found in

Malandraki (1989) and Malandraki and Daskin

(1992).

Hill and Benton (1992) consider a time-depen-
dent vehicle routing problem (without time

windows) and propose a model based on time-
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dependent travel speeds. Computational results

are reported on a small example with a single ve-

hicle and five locations. The authors also mention

the implementation of a simple greedy heuristic for

the multi-vehicle traveling salesman problem with

capacity constraints and no time windows for a
city with 210 locations. A validation of the model

within a commercial courier scheduling package is

also mentioned, but no details are provided.

The major weakness of the above models is that

they do not satisfy the ‘‘first-in–first-out’’ (FIFO)

property. The FIFO property guarantees that if a

vehicle leaves a node i for a node j at a given time,

any identical vehicle leaving node i for node j at a
later time will arrive later at node j (which is

common sense). This will be discussed in Section 3.

Time-dependency has seldom been addressed in

the literature on vehicle routing. However, it has

been widely studied for three related problems: the

time-dependent traveling salesman problem, the

shortest path problem and the path choice prob-

lem. They are briefly described below.
Time-dependent shortest path problem. The ear-

liest models which account for time-dependency

were developed by the end of the 1950s for solving

shortest path problems (Ford and Fulkerson,

1958; Cooke and Halsey, 1966; Dreyfus, 1969).

Since then, these problems have been the most

widely studied. The goal is to find minimum cost

paths from origin nodes to destination nodes,
through a network where travel times and costs are

time-dependent.

Time-dependent path choice problem. The path

choice problem is part of traffic equilibrium

models. Here, many travelers ‘‘compete’’ on a

transportation network to get to their destination.

These travelers are typically distributed among

several paths, besides the shortest ones, based on
route choice models which simulate user behavior.

The earliest work that we are aware about time-

dependent path choice problems is the one by

Marguier and Ceder (1984) for common bus stops

with overlapping routes.

Time-dependent traveling salesman problem

(TDTSP). The earliest papers in the literature re-

lated to time-dependent vehicle routing prob-
lems appeared in the 1960s and were dedicated to

the time-dependent traveling salesman problem

(Miller et al., 1960; Hadley, 1964). The TDTSP

constructs a Hamiltonian tour of minimum travel

cost over n cities,where the travel cost from city i

to city j depends on the time of the day.

According to the properties of the travel time

and cost functions, the work related to time-
dependent problems can be classified in four main

categories. They are briefly presented in the fol-

lowing sections.

2.1. Models based on ‘‘simple’’ travel time and cost

functions

Many researchers have used simple rules to in-
tegrate time-dependency components in their

models. In their decision support system for dis-

patching and processing customer orders for gas-

oline, Brown et al. (1987) first produce a solution

where travel time fluctuations are ignored. Then,

the loads for each truck are resequenced ‘‘manu-

ally’’ to take into account various factors such as

traffic congestion during rush hours, road and
weather conditions, etc. Other researchers use

multiplier factors to represent variations in travel

times (Fisher et al., 1982; Hill et al., 1988; Rous-

seau and Roy, 1988; Shen and Potvin, 1995).

Clearly, this is just a rough approximation of ac-

tual conditions.

2.2. Models based on discrete travel time and cost

functions

In this kind of formulation, the horizon of in-

terest is ‘‘discretized’’ into small time intervals.

The travel time and cost functions for each link are

assumed to be step functions of the starting time at

the origin node. This scheme is widely used in

many time-dependent transportation problems.
However, the assumption that travel times vary in

discrete jumps is just an approximation of real-

world conditions since travel times change con-

tinuously over time.

Many researchers used this kind of model to

solve time-dependent shortest path problems

(Cooke and Halsey, 1966; Dreyfus, 1969; Ziliask-

opoulos and Mahmassani, 1993; Ziliaskopoulos,
1994; Chabini, 1996, 1997). This framework was

also used to formulate time-dependent traveling
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salesman problems (Picard and Queyranne, 1978;

Fox et al., 1980; Malandraki, 1989; Malandraki

and Daskin, 1992). Finally, Nachtigall (1995)

used discrete transit functions to model a time-

dependent path choice problem in a railway con-

text.
The major drawback of using models that are

based on discrete travel time and cost functions is

that the FIFO property does not hold (see Section

3).

2.3. Models based on continuous travel time and

cost functions

In real-life, travel times vary continuously over

time. The work reported in this section is thus

aimed at modeling the reality more accurately. In

their formulations of time-dependent shortest path

problems, Halpern (1977) and De Palma et al.

(1990) calculate the travel times using nonnegative

and piecewise linear functions while Orda and

Rom (1990) assume that the travel times are ar-
bitrary. In their models dedicated to time-depen-

dent path choice problems, Hall (1986), Hickman

and Wilson (1995) and Hickman and Bernstein

(1997) assume that the travel times are stochastic

and time-dependent. Finally, Marguier and Ceder

(1984) study the same problem for common bus

stops with overlapping routes. Time-dependent

distributions were used to represent passengers�
waiting times.

Continuous travel time functions seem to be

more appropriate to model real-world conditions.

Unfortunately, models based on such functions

are confronted with the following limitations: (i)

simplifying assumptions are often made to obtain

a more tractable model (e.g., differentiability,

piecewise linearity, etc.); (ii) these functions
are still an approximation of what is observed in

the real world; (iii) in the case of the path choice

problem, using continuous time-dependent dis-

tributions to represent travel time or waiting time

functions results in complicated integrations

that are difficult to solve analytically. Further-

more, this kind of formulation often suggests that

passengers make their boarding decision using a
fairly complicated logic (Hickman and Bernstein,

1997).

2.4. Models based on Markovian formulations of

travel time and cost functions

The only work that we are aware of in this

category is the one of Psaraftis and Tsitsiklis
(1993). The authors investigate the shortest path

problem in a stochastic and time-dependent set-

ting. The cost of each arc ði; jÞ is a known function
fijðeiÞ of the state ei of some environment variable
at node i at the time of departure from node i to

node j. Environment variables are mutually inde-

pendent and governed by a finite state Markov

process where state transitions occur in discrete
time. The goal is to seek a policy that minimizes

the expected total cost on a path between two

specific nodes. A dynamic programming algorithm

is proposed to solve the problem. However, given

that its complexity depends on the number of

Markov states at each node, the state space grows

quickly with problem size, thus preventing the

model from being applied to realistic problem in-
stances.

In Section 3, we propose and analyze a model

that focuses on travel speed variations from one

time period to the next.

3. A time-dependent travel speed model

3.1. Motivation

As mentioned previously, the literature related

to time-dependent vehicle routing problems is very

scarce. In fact, the only papers that we are aware

of in this category are those of Malandraki (1989),

Malandraki and Daskin (1992) and Hill and

Benton (1992). They were briefly discussed in
Section 2. The major shortcoming of Malandraki�s
model, which represents the travel time as a step

function of time, is that the FIFO assumption does

not hold. To illustrate this, consider Fig. 1 which

represents a travel time function on a link ði; jÞ of
length 1.

If the vehicle leaves node i at instant t1 ¼ 1, it

will reach node j at instant t01 ¼ 4; but it will arrive
at instant t02 ¼ 3 ð< t01Þ if it leaves node i at instant
t2 ¼ 2 ð> t1Þ. To overcome this weakness, Maland-

raki (1989) and Malandraki and Daskin (1992)
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suggested to allow vehicles to wait at a node to

smooth the travel time function. However, this

suggestion concerns decreasing step functions only

and induces useless waiting at nodes. In real-life

applications (e.g., distribution of industrial prod-

ucts) it is hard to convince a dispatcher that it is
advantageous to force a driver to wait at a cus-

tomer location even if he is ready to depart.

We recall that Hill and Benton (1992) devel-

oped the only model that we are aware of based on

time-dependent travel speeds. In this formulation,

the travel time on a given link ði; jÞ, starting during
time period T, is

dij=rijT with rijT ¼ ðriT þ rjT Þ=2; ð1Þ
where dij is the distance between locations i and j,
and riT is the average speed associated with the

‘‘area’’ around location i during time period T.

Thus, rijT is an average travel speed for a trip from
i to j starting during time period T. But, since the

speed along a given link ði; jÞ is an average speed

based on a single period, the FIFO assumption is
not necessarily satisfied either. To illustrate this,

consider the arrival time at node j from node i

when all nodes have the same speed value riT for a
given time period T. Fig. 2 illustrates the travel

speed function for a node.

Assuming a link ði; jÞ of length 1, we have the

following. If the vehicle leaves node i at instant

t1 ¼ 1, it will arrive at node j at instant t01 ¼ 1þ
1 ¼ 2. However, if it departs from node i at instant

t2 ¼ 1:25 ð> t1Þ, it will reach node j at instant

t02 ¼ 1:25þ 0:5 ¼ 1:75 ð< t01Þ.

In fact, associating a time-dependent travel

speed or a time-dependent travel time with a link is
equivalent since it is always possible to deduce the

travel speed from the travel time, and conversely,

for a given travel distance. To better model time-

dependency, one has to take into account the ad-

justment of the travel speed when the vehicle

crosses the boundary between two consecutive

time periods. In the following, we propose a model

that addresses this issue.

3.2. The model

In vehicle routing problems and more generally

in the transportation field, an important area that

remains very challenging is the conception of effi-

cient models to achieve a good trade-off between

the implementation requirements and the ability to
reflect the complexity of real-world conditions

such as fluctuations in travel times. A ‘‘natural’’

and simple way to take time-dependency into ac-

count is to work with time-dependent travel speeds

and to adjust the speed when the vehicle crosses a

boundary between two time periods.

Let us assume that the horizon is divided into p

time periods T1; T2; . . . ; Tp. Given a network of n
nodes, a symmetric distance matrix D ¼ ðdijÞ and
travel speed matrices VT ¼ ðvijT Þ, T 2 fT1; T2; . . . ;
Tpg are defined. In contrast with the formulation

proposed by Hill and Benton (1992) where travel

speeds are indexed by time periods and nodes,

here, the travel speeds are indexed by time periods

Fig. 2. Travel speed function at a node.Fig. 1. Travel time function on a link.
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and arcs. This reduces the computational effort at

the cost of more storage (in Hill and Benton

(1992), we recall that the travel speed on a link

ði; jÞ is calculated as rijT ¼ ðriT þ rjT Þ=2). To limit

the number of speed values vijT to estimate, the set
of arcs A is partitioned into subsets ðAcÞ16 c6C.
That is, the travel speed during period T on an arc

ði; jÞ that belongs to a subset (or category) Ac is

vijT ¼ vcT , where vcT is the travel speed associated

with category Ac and time period T. Consequently,

the number of parameters in the model is consid-

erably reduced, especially if C is small. Partition-

ing the set of arcs into subsets is a reasonable

assumption for urban transportation networks
since links (routes) can usually be classified into

categories based on their physical characteristics

(e.g., width, one/two ways, etc.), and their geo-

graphical location.

3.2.1. Changing travel speeds

The main point in our model is that we do not

assume a constant speed over the entire length of a
link. Rather, the speed changes when the boundary

between two consecutive time periods is crossed.

This is illustrated in Fig. 3 where a route for one

vehicle is considered. The horizon is ‘‘discretized’’

into three time periods ðTjÞ16 j6 3, with a different

speed associated with each period. The vehicle

leaves service point i at time t0 2 T1 and travels at
speed v1T1 until it reaches point i1 at the boundary
between periods T1 and T2. From there, the vehicle

travels at a faster speed v1T2 until it reaches point i2
at the boundary between T2 and T3. Finally, it
travels at speed v1T3 for the remainder of its trip to
reach point j.

3.2.2. Travel time calculation

Fig. 4 describes the procedure for calcu-
lating the travel time between any pair of nodes i

and j.

We suppose that the vehicle leaves node i at

t0 2 Tk ¼�tk;�ttk� and that link ði; jÞ belongs to cate-

gory c; 16 c6C. It is assumed that dij is the dis-
tance between i and j, and vcTk is the travel speed
associated with category c and time period Tk.
Also, t denotes the current time and t0 denotes the
arrival time.

Fig. 3. Changing travel speed over time.
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3.2.3. Characteristics of the travel time function

In our model, the travel speed vcT is a step
function of the time of the day. Therefore, the

travel time is a piecewise continuous function over

time that is simple and easy to evaluate beside

being a ‘‘natural’’ way to estimate travel times in

real-world conditions. Fig. 5 gives an example of

the travel speed function and its associated travel

time function for a link of length 1.

We are aware that travel speeds also change
continuously over time, however using step func-

tions to compute travel speeds is a more reason-

able assumption than for travel times. That is,

when the boundary between two consecutive time

periods is crossed, the speed will typically change

much faster than the travel time on a link.

Due to the travel speed changes, the travel time

function proposed in this model satisfies the FIFO

property. That is, leaving a node earlier guarantees

that one will arrive earlier at destination. Consider
the previous example given in Fig. 5. A vehicle that

is ready to leave the link before t1 ¼ 1 has no in-

centive to wait even if its speed will increase af-

terward. Actually, during this waiting time, the

vehicle could have used the available speed to get

closer to its destination until the time of speed

change. At this point, the faster speed could be

used to terminate the trip. Hence, the FIFO
property precludes our model from inducing use-

less waiting times.

This approach has been implemented within a

parallel tabu search developed by Taillard et al.

(1997) for the fixed travel time version of the

problem. The following section will briefly intro-

duce the original algorithm and then, explain how

it was modified to cope with time-dependent travel
times.

4. A parallel tabu search algorithm

4.1. The original algorithm

The algorithm developed in Taillard et al.
(1997) is a parallel tabu search heuristic with an

adaptive memory. Tabu search is an iterative local

search technique that starts from some initial so-

lution. At each iteration, a neighborhood is gen-

erated around the current solution and the best

solution in this neighborhood becomes the new

current solution (even if it does not provide an

improvement). By allowing a degradation of the
objective, it is possible to escape from bad local

optima, as opposed to pure descent methods. The

interested reader will find more details about this

approach in Glover and Laguna (1997).

The algorithm developed in Taillard et al.

(1997) can be summarized as follows:

• Construct I different initial solutions with a sto-
chastic insertion heuristic (where the choice of

the next customer to be inserted is randomized).

Fig. 4. Travel time calculation procedure.

Fig. 5. An example of travel speed and travel time functions.

S. Ichoua et al. / European Journal of Operational Research 144 (2003) 379–396 385



• Apply tabu search to each solution and store

the resulting routes in an adaptive memory.

• While a stopping criterion is not met do:

� Use the routes stored in the adaptive memory

to construct an initial solution.
� Decompose the problem into subproblems ob-

tained through a geographical, distance-based,

decomposition procedure (which partitions the

service area into sectors by sweeping a ray, with

the central depot as the pivot, over the routes).

� Apply tabu search to each subproblem.

� Add the routes of the resulting solution in the

adaptive memory.
The objective is to minimize a weighted sum of

total distance traveled and total lateness over all

customers. The procedure for generating the neigh-

borhood of the current solution is the CROSS ex-

change. Basically, two segments of variable lengths

are taken from two different routes and swapped.

Fig. 6 illustrates this procedure.

To speed up the algorithm, a parallel implemen-
tation on a network of workstations was devel-

oped (Taillard et al., 1997). The parallelization of

the procedure was achieved at two levels:

(1) Different tabu search threads run in parallel,

each of them starting from a different initial

solution.

(2) Within each search thread, many tabu searches
run independently on the subproblems ob-

tained through the decomposition procedure.

4.2. Implementing the time-dependent model

Implementing the time-dependent model mostly

impacts the evaluation of a new solution after a

CROSS exchange. In the following, we explain
how the original algorithm was modified to cope

with time-dependency.

4.2.1. Objective function

To evaluate a given solution, the total distance

traveled is replaced by the total travel time in the

objective function.

4.2.2. Neighborhood evaluation

The evaluation of a move, as implemented in

the original algorithm, cannot be directly applied

to our problem. In the following, the original
evaluation process is briefly described, then its

adaptation to the time-dependent problem is dis-

cussed in detail.

4.2.2.1. The original procedure. As mentioned be-

fore, the original algorithm uses CROSS exchanges

to generate the neighborhood. The evaluation of

such moves is based on the difference between the
value of the neighboring solution and the value of

the current solution. Namely, df1 ¼ dd þ a 
 dl,
where dd and dl are the modification to the total

distance and the modification to the total lateness

of the solution, respectively, and a is a constant

parameter. The evaluation of dd is done in con-

stant time by simply subtracting the total length of

the edges that are removed from the solution and
by adding the total length of the edges that are

introduced into the solution. The modification to

the total lateness is the sum of the modifications to

the total lateness incurred by both routes involved

in the CROSS exchange. Unlike dd, this modifi-
cation cannot be evaluated exactly in constant

time because any additional lateness at a given

customer location must be propagated along the
route. To reduce the complexity of the calculation,

an approximate evaluation procedure is used to

evaluate each neighboring solution. Then, the M

best solutions according to this approximation

are evaluated exactly and the best solution is se-

lected.Fig. 6. A CROSS exchange.
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To illustrate the approximate evaluation pro-

cedure, the contribution dl of the new route ser-

vicing customers X1;X 0
2; Y2 and Y 0

1 in Fig. 6 is

considered. The first part of this contribution is

evaluated exactly in constant time by propagating

the lateness at customer X 0
2 along the route seg-

ment X 0
2–Y2 (which is limited to at most seven

customers, see Taillard et al., 1997). The second

part of dl is assessed using an approximation

function associated with customer Y 0
1. To construct

the approximation function of a given customer i,

the start of service bi is artificially delayed by a

number of dbi values, and the impact of each dbi
on the total lateness of the route dli is evaluated
exactly. A piecewise linear function is then pro-

duced by interpolation between these points. The

interested reader will find further details in Tail-

lard et al. (1997).

4.2.2.2. Adaptation to the time-dependent model. In

the proposed time-dependent model, the difference

between the value of the neighboring solution and
the current solution is df2 ¼ dtr þ a � dl, where dtr
is the modification to the total travel time and dl is
the modification to total lateness.

(a) Lateness. Due to the time-dependency com-

ponent, the exact evaluation of lateness is more

computationally expensive than in the original

problem. Thereby, using an approximate evalua-

tion procedure is even more important in this case.
In the following, the adaptation of the original

approximation procedure is illustrated for the new

route servicing customers X1;X 0
2; Y2 and Y

0
1 in Fig. 6.

(i) The contribution of the route segment X 0
2–Y2 to

the total lateness is assessed exactly as in the

original algorithm. However, the time-depen-

dent travel time calculation described in Sec-
tion 3.2 is used. This provides the value dbY 0

1

at Y 0
1.

(ii) The contribution of the remainder of the route

is evaluated approximately as in the original

procedure. That is, an approximate function

is associated with each customer i, based on

an exact evaluation of dli for a few values

of dbi, using the time-dependent travel time
function. Now, suppose that we search for the

value of dlY 0
1
induced by dbY 0

1
¼ z with zj 6

z6 zjþ1, where zj and zjþ1 are two consecutive
values for which dlY 0

1
is known exactly (i.e.,

these values have been used to construct the

linear interpolation). In Fig. 7, we assume that

dlðzÞ, dlj and dljþ1 are associated with z, zj and
zjþ1, respectively.

The interpolation is such that dlj 6 dlðzÞ6
dljþ1, which makes sense since the travel time

function satisfies the FIFO rule (that is, the exact

variation of lateness dlðzÞ
 should also satisfy

dlj 6 dlðzÞ
 6 dljþ1).
(b) Travel time. As opposed to the variation of

the total distance used in the original algorithm,

assessing the modification to the total travel time

cannot be achieved easily. To illustrate this, con-

sider the two routes in Fig. 6. Subtracting the total

length of the removed edges and adding the total

length of the new edges was sufficient to evaluate the

total distance variation. However, in the time-

dependent context, it may well happen that the
total travel time over route segment X 0

1–Y1 or (and)
over route segment X 0

2–Y2 will change after execut-
ing the move (i.e., the total travel time over segment

X 0
1–Y1 before the move depends on the arrival time

to X 0
1 from X1; after the move, it depends on the

arrival time to X 0
1 from X2, which may be different).

To overcome this difficulty, an approximate eval-

uation is used, similar to the one presented in (a).
At the end, the M best moves according to the

approximation, are evaluated exactly using the

time-dependent travel time function, and the best

exact move is executed to obtain the new current

solution. M is a parameter that needs to be

Fig. 7. Approximate evaluation of lateness.
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adjusted, since the better the approximation is, the

lower the value of M needs to be.

To examine the potential savings that may be

obtained through the use of the proposed time-

dependent approach, several tests were conducted.

The next section reports computational results
obtained with the new algorithm.

5. Computational results

In this section, we report experimental results

obtained with the time-dependent algorithm. First,

we describe the test problems and then we report
numerical results.

5.1. Test problems

Our model was validated on Solomon�s 100-
customer Euclidean problems (see Solomon,

1987). In these problems, customer locations are

generated within a ½0; 100�2 square. Six different
sets of problems are defined, namely C1;C2;R1;
R2;RC1 and RC2. The customers are uniformly

distributed in the problems of type R, clustered in

groups in the problems of type C and mixed in the

problems of type RC. In the problems of type 1,

only a few customers can be serviced on each route

due to a narrow time window at the depot, as

opposed to problems of type 2 where each route
may have many customers. The travel times were

calculated using a 3� 3 time-dependent travel

speed matrix ðvcT Þ16 c6 3; 16 T 6 3, where each row

corresponds to a category of arc and each column

to a time period. Within the scheduling horizon,

the first and third periods stand for the morning

and evening rush hours, respectively. The second

period corresponds to the middle of the day, when
the traffic density is lower.

Entries of the travel speed matrix were adjusted

to create three different types of scenarios. For

each scenario, the travel speeds in the morning and

evening rush hours were obtained by dividing the

travel speeds in the middle of the day by a factor a.
In scenarios 1, 2 and 3, a was set to 1.5, 2 and 4,

respectively. Hence, scenario 3 is the one with the
highest degree of time-dependency, while scenario

1 is the one with the lowest. The travel speed

matrix for the three scenarios are reported in Table

1. The average speed in each matrix is approxi-

mately 1, so the ‘‘average’’ difficulty is the same as

in Solomon�s original problems.

5.2. Experiments

The experiments reported in this section were

performed on a network of 9 SUN UltraSparc-IIi

workstations (300 MHz). As mentioned previ-

ously, the objective is to minimize the sum of total

travel time and total lateness over all customers.

In these experiments, the fleet size was set to the
number of routes in the best solution reported in

the literature for each problem. The values of the

parameters were kept as in the original algorithm

(see Gendreau et al., 1999). With respect to pa-

rameter M, which corresponds to the number of

best moves (according to the approximation)

which are evaluated exactly, several values were

tested.
For each scenario, each problem is solved as-

suming time-dependent travel speeds, and then

assuming constant speeds (i.e., for each category

of arcs, the average speed is taken over the three

time periods). The two solutions are then com-

pared, using the time-dependent travel speed ma-

Table 1

Travel speed matrices in scenarios 1–3

Scenario 1

T

0.54 0.81 0.54

c 0.81 1.22 0.81

1.22 1.82 1.22

Scenario 2

T

0.33 0.67 0.33

c 0.67 1.33 0.67

1.33 2.67 1.33

Scenario 3

T

0.12 0.46 0.12

c 0.46 1.92 0.46

0.96 3.84 0.96

c¼ category of arc; T¼ time period.
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trix, to evaluate what is gained by explicitly con-

sidering variations in travel times over the day

rather than using the approximation represented

by the average.

5.2.1. Preliminary tests

Scenario 1 was first considered for the prelimi-

nary tests. The intent was to find the best value for

parameter M. The preliminary experiments were

conducted over a small sample of problems se-

lected in each of the six classes C1, C2, R1, R2, RC1

and RC2. Several values had to be tested for every

problem in the sample. Thereby, a significant

amount of computation time is required if the size
of the sample is too large. On the other hand, this

size has to be large enough to get a good calibra-

tion. In our experiments, the size of the sample was

set to 4. Table 2 reports results obtained with the

time-dependent travel speed matrix of scenario 1,

and the values 4, 8, 16, 24, 32 and 40 for parameter

M. The four numbers in each entry are the average

travel time, lateness, objective value and running

time (in minutes) respectively, for each problem
class. In these experiments, the algorithm stops

after 50 restarts from the adaptive memory (see

Section 4.1). As expected, increasing the value of

M increases the running time and decreases the

objective value. However, the resulting increase in

running time is small when compared to the total

running time. In fact, since the neighborhood of a

given solution is large, the algorithm spends much
more time at evaluating the neighboring solu-

tions, even approximatively, than it does at eval-

uating a few solutions exactly. Table 2 was used to

Table 2

Searching for the best value for parameter M

Problem set M ¼ 4 M ¼ 8 M ¼ 16 M ¼ 24 M ¼ 32 M ¼ 40

C1, 4 problems 905.188a 856.708 831.53 829.965 827.225 833.62

31.765b 27.645 25.272 27.687 25.272 25.272

936.952c 884.352 856.802 857.655 852.498 858.635

27.833d 28.039 28.962 29.284 29.304 29.508

R1, 4 problems 1023.62 997.88 980.392 972.38 973.195 963.225

59.432 51.59 46.91 47.537 37.767 52.007

1083.05 1049.47 1027.30 1019.92 1010.96 1015.23

23.579 23.65 24.0625 24.632 24.95 24.929

RC1, 4 problems 1090.54 1064.38 1039.40 1036.74 1030.57 1030.68

49.517 28.002 40.975 38.935 37.225 40.272

1140.06 1092.38 1080.37 1075.08 1067.79 1070.95

22.602 22.333 22.983 23.404 23.45 23.579

C2, 4 problems 836.25 758.518 785.675 763.92 759.705 737.045

25.34 35.037 35.702 34.667 18.562 39.90

861.59 793.555 821.378 798.588 778.268 776.945

11.033 11.03 12.201 12.218 12.65 12.921

R2, 4 problems 996.258 1020.79 969.792 940.088 943.03 941.18

68.365 42.262 52.767 22.342 20.62 16.725

1064.62 1063.05 1022.56 962.43 963.65 957.905

15.891 19.412 23.596 28.271 29.27 29.133

RC2, 4 problems 1162.63 1155.73 1087.93 1067.97 1015.51 1035.16

73.742 39.86 10.247 22.437 29.47 9.362

1236.37 1195.59 1098.18 1090.41 1044.98 1044.522

10.912 12.558 16.783 16.515 16.867 16.903

a Travel time.
b Lateness.
c Objective value.
dRunning time (in minutes).
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determine the value for M that achieves the best

trade-off between execution time and solution

quality. We observed that M ¼ 32 and 40 lead to

approximatively the same results, while the exe-

cution time for M ¼ 32 is slightly smaller. Hence,

the value 32 was retained for further testing.
To quantify the effort spent by the proposed

time-dependent model when compared with the

original algorithm, we computed the amount of

time consumed by one iteration of each algorithm.

Preliminary results have shown that the time-

dependent model leads to a very small increase in

computational time (about 15.86 seconds against

15.29 seconds for problems of classes C1, R1 and
RC1, and about 89.78 seconds against 86.36 sec-

onds for problems of classes C2, R2 and RC2).

5.2.2. Numerical results

Table 3 compares, for scenarios 1, 2 and 3,

the solutions obtained with time-dependent travel

speeds and the solutions obtained with constant

speeds over all problems in each category. The

Table 3

Comparison of time-dependent and constant speeds under the three scenarios in a static setting (with M ¼ 32)

Problem set Scenario 1 Scenario 2 Scenario 3

Time-dependent

speed

Constant

speed

Time-dependent

speed

Constant

speed

Time-dependent

speed

Constant

speed

C1, 9 problems 0a 0 0 0 0 0.222

818.57b 836.878 836.787 857.241 984.556 1044.23

21.514c 15.764 112.553 109.45 399.28 637.99

840.084d 852.642 949.34 966.691 1383.84 1682.22

R1, 12 problems 0 0 0 0.167 0 0.417

935.188 956.213 778.801 816.498 710.076 798.768

26.461 25.655 36.395 33.692 48.907 51.53

961.648 981.868 815.197 850.19 758.983 850.298

RC1, 8 problems 0 0 0 0.125 0 0.125

1038.44 1063.02 873.741 908.692 825.97 900.741

30.927 32.776 26.756 27.634 22.396 33.524

1069.36 1095.79 900.498 936.33 848.366 934.265

C2, 8 problems 0 0 0 0.25 0 0.75

659.221 699.714 764.091 810.00 1250.28 1119.10

13.361 6.507 80.852 154.67 564.28 1038.26

672.582 706.221 844.944 964.676 1814.56 2157.36

R2, 11 problems 0 0 0 0.091 0 0.364

939.255 934.775 861.763 978.285 782.594 873.669

10.698 9.18 8.100 16.581 18.465 40.546

949.954 943.955 869.864 994.866 801.059 914.215

RC2, 8 problems 0 0.125 0 0 0 0.5

1078.17 1081.59 988.124 1032.44 979.758 1034.29

28.998 35.212 22.352 6.039 23.917 63.425

1107.17 1116.803 1010.48 1038.48 1003.68 1097.71

Overall, 56 problems 0 0.018 0 0.107 0 0.393

919.612 929.349 859.806 897.917 900.687 946.905

21.645 20.476 61.623 54.939 165.504 283.713

941.257 949.825 921.430 952.855 1066.193 1230.618

a Fraction of infeasible solutions.
b Travel time.
c Lateness.
dObjective value.
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four numbers in each entry are the fraction of in-

feasible solutions, the average travel time, lateness

and objective value, respectively, for each problem

class. The row ‘‘overall’’ contains averages taken

over the entire set of 56 test problems. It is worth

noting that a solution obtained with constant
speeds may well be infeasible in the time-depen-

dent context (i.e., the upper bound of the time

window at the depot may well be exceeded). This is

what the first number in each entry indicates. The

results show that a significant number of solutions

obtained with constant speeds are infeasible in the

time-dependent context and that this number in-

creases with the degree of time-dependency. Also,
the use of time-dependent travel speeds consider-

ably improves the objective value. This improve-

ment is observed under the three scenarios, for all

problem classes. More precisely:

Scenario 1. An improvement is observed in all

classes of problems (apart from R2). The reduction
ranges from 1.0% to 5.0%. In the case of R2, the two
models lead to approximatively the same results.

Scenario 2. As expected, the model performs better

under scenario 2 where the degree of time-depen-

dency is higher. In fact, the results show an im-

provement in all problem classes. The reduction

ranges from 2.0% to 12.5%.

Scenario 3. In this scenario, the results are the most

impressive. This is not surprising since the degree

of time dependency is the highest. An improvement

is observed in all problem classes. The reduction in

the objective value ranges from 9.2% to 18.0%.

As we can see, the results obtained with time-

dependent travel speeds are (almost) systematically

better than those obtained with constant speeds.

This is not really surprising, given that the average
speed is a gross approximation of real conditions.

Furthermore, this approximation gets worse when

the degree of time dependency increases. It should

also be noted that all numbers in Table 3 are av-

erages taken over a number of problems (from 8 to

12 problems, depending on the problem class).

These averages reflect the natural tendency of

time-dependent solutions to be of better quality,
although this is not necessary the case on specific

instances within a problem class. The following

section will now describe the dynamic version of

the problem, where similar trends are observed.

6. Dynamic problem

The proposed model was also tested in a dy-

namic environment. In this section, the dynamic

time-dependent vehicle routing problem is first

introduced. Then, we explain how the algorithm of

Taillard et al. (1997) for the static problem with

fixed travel times was adapted to the dynamic case

(Gendreau et al., 1999). We then describe how we

modified the later algorithm to cope with time-
dependent travel times in a dynamic environment.

Finally, computational results are reported.

6.1. Problem definition

As opposed to the static problem, the number

of service requests are not known completely

ahead of time, but are rather dynamically revealed
as time goes by.

As illustrated in Fig. 8, in a dynamic environ-

ment, a vehicle route can be divided into three

parts at any instant t:

• completed movements which form the part of

the route already executed. Thereby, this part

cannot be modified anymore;
• current movement of the vehicle toward its cur-

rent destination;

• planned movements which constitute the por-

tion of the route not yet executed by the vehicle

(planned route).

Whenever a new request unfolds at instant t, the

problem is to assign this request to a particular
vehicle and incorporate it into its planned route at

minimum cost.

6.2. Original dynamic algorithm (Gendreau et al.,

1999)

In a dynamic setting, at any instant t, a solution

is a set of planned routes, each beginning with
the current destination of the associated vehicle.

The major modification for adapting the static
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algorithm to the dynamic case was related to the

management of new incoming events. In Gendreau

et al. (1999), a new event may be of two types: the

occurrence of a new service request, or the com-

pletion of service at a customer. This latter event is

related to the fact that the driver has no prior
knowledge of his planned route. Consequently, he

must be informed of his next destination as soon as

he has completed the service at his current loca-

tion. Whenever any of these two types of events

occurs, the tabu search threads are interrupted.

Then, after an appropriate update of the adaptive

memory to reflect the current state of the world,

the search is restarted with new solutions con-
structed from the updated memory. The tabu

search is thus used to improve the current (static)

solution between the occurrence of new events.

6.3. Time-dependent algorithm in a dynamic envi-

ronment

In addition to the modifications already dis-
cussed in Section 4.2, another modification is re-

quired in the dynamic case. In the original

algorithm, a least commitment strategy is consid-

ered. That is, if there is some time flexibility at the

vehicle�s next destination, the vehicle waits at its
current location rather than its next destination.

The intent is to allow the vehicle to service a new

request that may appear in the vicinity of its cur-

rent location. Hence, one has to determine a value

for the departure time that allows the vehicle to

reach its next customer no earlier than the lower

bound of its time window.

When time-dependency is taken into account,

the adjustment of the vehicle departure time is
more complicated, because the travel time between

a given pair of locations depends on the departure

time from the origin. Hence, one has to take into

account the change that occurs in travel speed

when the boundary between two consecutive time

periods is crossed. This problem is solved through

a backward recursive procedure (in contrast with

the forward procedure used to compute the travel
times between customers).

In Fig. 9, a route for one vehicle is considered.

The horizon is ‘‘discretized’’ into two time periods

ðTkÞ16 k6 2. In this figure, i is the current customer

and j is the next customer to be serviced, with arc

ði; jÞ belonging to category 1.
We also suppose that the time of departure dep

belongs to time period T1 ¼�t1;�tt1� and that l, the
lower bound of the time window at customer j,

belongs to time period T2 ¼�t2;�tt2�, with �tt1 ¼ t2.
With the least commitment strategy, the departure

time dep from node i is calculated as follows. First,

we evaluate the distance traveled during time pe-

Fig. 8. A vehicle route in a dynamic setting.

Fig. 9. Finding the departure time for a vehicle in a dynamic

environment.
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riod T2 which is d 0
ij ¼ v1T2ðl� t2Þ. Since the remain-

ing distance is d 00
ij ¼ dij � d 0

ij, we obtain dep ¼ �tt1�
d 00
ij=v1T1 .
A pseudo-code for this backward recursive

procedure is provided in Fig. 10. For a given ve-

hicle, it calculates the departure time from its
current customer i to arrive at the lower bound l of

the time window associated with its next destina-

tion j, where l 2 Tk ¼�tk;�ttk�. In this figure, t is a

time variable which is updated at each iteration

and dep corresponds to the departure time. It is

also assumed that arc ði; jÞ belongs to category

c; 16 c6C.
The modified algorithm was used to assess the

proposed time-dependent model in a dynamic

context. Details about the experiments are re-

ported in the following section.

6.4. Computational results

6.4.1. Simulation framework

Simulations were performed to validate our
model in a dynamic setting. As in the static case,

data were taken from Solomon�s 100-customer

Euclidean problems (Solomon, 1987). The same

six classes of problems were considered, namely

C1, C2, R1, R2, RC1 and RC2. The set of requests

was divided into two subsets. The first subset

contains requests that are assumed to be known at

the start of the day (50% of the entire requests in
our implementation). The second subset contains

requests that are received in real-time. Using

minutes as time units for time-related data in

Solomon�s files, the time horizon was set to 15

minutes. This leads to about three requests per

minute. The interested reader will find more details

about the simulator in Gendreau et al. (1999).

6.4.2. Numerical results

The experiments were conducted within the

same framework used in the static case (see Section

5). Hence, the three scenarios previously consid-

ered were examined in the dynamic setting, using
the same parameter values than those used in the

static environment. In the dynamic context, some

requests may be rejected when they occur because

no feasible insertion place is found in the current

routes. This phenomenon is rather marginal, but a

few solutions may contain only 98 or 99 custom-

ers (rather than 100 customers). Table 4 com-

pares, for scenarios 1, 2 and 3, the solutions
obtained with time-dependent travel speeds to

those obtained with constant speeds. The four

numbers in each entry are the fraction of infeasible

solutions, the average travel time, lateness and

objective value, respectively, for each problem

class. The row ‘‘overall’’ contains averages taken

over the entire set of 56 test problems. In the fol-

lowing, we summarize the main findings for each
scenario:

Scenario 1. For all problem classes, the time-

dependent model leads to substantial improve-
ments to the objective value, ranging from 4.0% to

13.2%. A total of 18 solutions produced with

constant speeds are now infeasible in the time-

dependent context.

Scenario 2. As expected, the time-dependent model

leads to larger improvements in the objective value

with regard to scenario 1, given the higher degree

of time-dependency. The improvement now ranges

from 21% to 75%, depending on the problem class.

Furthermore, 32 solutions obtained with constant

speeds are infeasible (i.e., more than half of the

solutions).

Scenario 3. The degradation of the model based on

constant speeds appears clearly in this case. The

time-dependent model provides improvements
ranging from 62.5% to 78.0%, depending on the

problem class, and almost all solutions (except

Fig. 10. Departure time calculation procedure in a dynamic

environment.
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four) obtained with constant speeds are infeasible

in the time-dependent context.

7. Conclusion

Time-dependent vehicle routing is still a very

challenging area that needs to be explored, since it

provides a more accurate way to model real

problems. This paper proposed a time-depen-

dent model for a vehicle routing problem with

time windows, based on time-dependent travel

speeds, which satisfies the FIFO assumption.
Characteristics of the model were addressed and

discussed. Then, experiments were performed to

evaluate the model in a static and a dynamic en-

vironment. The results show that the time-depen-

dent model provides very significant improvements

over the model with fixed travel times, thus indi-

cating the usefulness of additional information

about the problem. Future work will now be
aimed at trying to exploit probabilistic informa-

tion about the future to make better dispatching

decisions.

Table 4

Comparison of time-dependent and constant speeds under the three scenarios in a dynamic setting (with M ¼ 32)

Problem set Scenario 1 Scenario 2 Scenario 3

Time-dependent

speed

Constant

speed

Time-dependent

speed

Constant

speed

Time-dependent

speed

Constant

speed

C1, 9 problems 0a 0 0 0.222 0 1.0

895.718b 947.766 949.783 1080.75 1208.54 2058.99

40.21c 74.135 192.74 367.248 473.072 3190.72

935.928d 1021.90 1142.52 1447.99 1681.61 5249.71

R1, 12 problems 0 0.583 0 0.833 0 1.0

1069.36 1199.90 931.956 1271.13 875.012 1506.57

92.531 126.793 62.461 395.985 496.492 1490.15

1161.89 1326.69 994.418 1667.12 1371.661 2996.72

RC1, 8 problems 0 0.625 0 1.0 0 1.0

1168.49 1288.60 1023.82 1364.41 974.794 1485.78

132.084 210.266 69.048 595.28 47.77 1238.44

1300.58 1498.87 1092.87 1959.69 1022.56 2724.22

C2, 8 problems 0 0.25 0 0.75 0 1.0

712.542 696.881 884.101 751.332 1103.11 1184.45

15.751 61.495 44.102 250.248 516.088 1660.43

728.294 758.376 928.204 1001.58 1619.19 2844.87

R2, 11 problems 0 0.273 0 0.273 0 0.818

1027.61 1086.55 971.037 1242.67 973.65 1520.63

16.396 74.951 12.954 480.605 23.637 2934.54

1044.00 1161.50 983.992 1723.27 997.287 4455.17

RC2, 8 problems 0 0.125 0 0.375 0 0.75

1196.53 1253.62 1068.67 1342.52 1010.20 1783.80

24.68 40.628 16.956 209.471 31.931 1779.71

1221.21 1294.25 1085.62 1552.00 1042.14 3563.51

Overall, 56 problems 0 0.321 0 0.571 0 0.929

1014.60 1085.599 968.315 1184.210 1014.14 1588.731

54.156 98.434 65.366 388.995 272.17 2076.908

1068.76 1184.033 1033.80 1573.205 1286.31 3665.639

a Fraction of infeasible solutions.
b Travel time.
c Lateness.
dObjective value.
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