
Meta-Modelling Hybrid Formalisms

Simon Lacoste-Julien, Hans Vangheluwe, Juan de Lara, and Pieter J. Mosterman

Abstract— This article demonstrates how meta-modelling
can simplify the construction of domain- and formalism-
specific modelling environments. Using AToM3 (A Tool for
Multi-formalism and Meta-Modelling developed at McGill
University), a model is constructed of a hybrid formalism,
HS, that combines Event Scheduling constructs with Ordinary
Differential Equations. From this specification, an HS-specific
visual modelling environment is synthesized. For the purpose
of this demonstration, a simple hybrid model of a bouncing ball
is modelled in this environment. It is envisioned that the future
of modelling and simulation in general, and more specifically
in hybrid dynamic systems design lies in domain-specific
Computer Automated Multi-Paradigm Modelling (CAMPaM)
which combines multi-abstraction, multi-formalism, and meta-
modelling. The small example presented in this article demon-
strates the feasibility of this approach.

I. INTRODUCTION

The ability to model complex physical as well as control
systems and to experiment with them using simulation
can be greatly enhanced when an appropriate, possibly
visual, modelling and simulation environment is available.
Such an environment will only be useful if it supports the
most appropriate modelling formalism for the task at hand.
Appropriateness is context dependent and depends on the
goals of the user of the tool as well as on the information
available about the system. In particular, appropriateness of
a formalism depends on the type of system under study, on
the aspects of the structure and behaviour of the system one
is interested in, and on the kind of queries one wishes to
make regarding the system.

Hybrid models combine discrete (time/event) and contin-
uous model constructs in a single model. The reasons for
this combination vary. Often, certain aspects of a system’s
continuous behaviour can be abstracted and represented as
an instantaneous discrete event as they happen on a very
small time scale compared to the rest of the system’s be-
haviour. A side-effect of such abstraction is an improvement
in simulation performance. A discussion of different types
of physically meaningful abstraction is found in [1].

A plethora of discrete-time, discrete-event as well as
continuous modelling formalisms exist. This allows for a
large number of possible combination (hybrid) formalisms.

Hans Vangheluwe is with the School of Computer Science, Mcgill
University, H3A 2A7 Montréal, Canada hv[a]cs.mcgill.ca

Simon Lacoste-Julien worked on Meta-Modelling Hybrid Formalisms
while at McGill University. He is currently a Ph.D. student at UC Berkeley,
Berkeley, CA 94720-1776 slacoste[a]eecs.berkeley.edu

Juan de Lara is with the Departamento Ingenierı́a Informática, Uni-
versidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
Juan.Lara[a]ii.uam.es

Pieter J. Mosterman is with The MathWorks Inc., Natick, MA 01760-
2098 pieter.mosterman[a]mathworks.com

Depending on the modeller’s needs, a modelling and simu-
lation tool should support the most appropriate combination.
As modellers’ needs may vary widely, it is desirable to
support many different combinations. Constructing one tool
that supports all formalism combinations is not feasible nor
efficient.

The first section of this article describes a particular
hybrid formalism that combines Event-Scheduling (ES)
with Ordinary Differential Equations (ODEs). The Event-
Scheduling formalism [2] was chosen as it allows de-
scribing queueing problems elegantly. A visual syntax for
this modelling formalism is presented. The formalism’s
syntax, its meaning, as well as a prototype simulator for
it implemented in Python1 are introduced by means of the
“bouncing ball” example.

In the second section, it is shown how meta-modelling
can be used to describe the (abstract as well as concrete
visual) syntax of the hybrid formalism. Meta-modelling is
the explicit modelling of a class of models in an appropriate
formalism – Entity-Relationship Diagrams in this case. Us-
ing AToM3 to encode this meta-model allows the automatic
generation of a visual modelling environment specific to the
described formalism.

The third section presents the notion of model trans-
formation. Different types of transformation are possible.
Simulation consists of a series of transformations that
modify time and the state. Simplification transformations
modify the structure of the model. Code-generating trans-
formations produce a textual representation of the model
suitable for processing by an appropriate solver/simulator.
Graph grammar models that allow for declarative modelling
of model transformations are briefly introduced. The code
generator for the modelling and simulation environment is
modelled as a graph grammar.

II. A HYBRID FORMALISM: HS=ES+ODE

To set the stage for the subsequent presentation of
meta-modelling of a domain-specific visual modelling en-
vironment, a visual formalism (named HS) is introduced,
combining Event-Scheduling with Ordinary Differential
Equations. To introduce the formalism, Figure 1 models
a bouncing ball that can get stuck on the ground after
a certain time. Two modes are used: when the ball is
in free fall (mode Free_Ball) and when it is stuck
(mode Stuck). When in free fall, the ODE describing the
ball’s behaviour is simply dv/dt = -g and dy/dt = v
where y is the height of the ball; v its speed; and g the
gravity constant. When in the Stuck mode, the ball is

1http://www.python.org



Fig. 1. The model of a bouncing ball

at rest: dv/dt = 0. The first event in the model is the
Initialize_Model event, which is labelled in Figure 1
as the START EVENT. In any HS model, there needs to be
exactly one START EVENT which will indicate where to
start the simulation. This event is typically used to initialize
the state variables in the model; here, the action code in
the event handler states y = y0; v = v0 so the height
and velocity of the ball are initialized to the value given
by parameters y0 and v0, which are defined in a global
attribute for the model (namely, in Parameters_List
- see Figure 4 for a visual environment defining those
attributes). There is a Mode_Transition going from the
start event to the Free_Ball mode indicating which mode
is used as the initial continuous mode for the simulation.
In this mode, the behaviour of the ball is governed by the
ODE {

dy
dt = v
dv
dt = −g

For correct simulation of the model, it is mandatory that the
START EVENT be linked to a (possibly empty) continuous
mode.

The Check_Collision State_Guard connects
the Free_Ball mode to the Collision Event_HS,
with the meaning that when a zero is detected in the
monitoring function given in the State_Guard attributes
(here, y) in the correct direction (here, from + to -), then
the given Event_HS is triggered. That is, its action code,
mode transition and schedule events are executed. In this
case, Collision contains only v = - k * v as action
code, which reverses the speed of the ball with a coefficient
of restitution k (smaller than 1 for inelastic collision; equal
to 1 for elastic collision; and greater than 1 for superelastic
collision). The Mode Transition to the Free_Ball mode
indicates that after this (instantaneous) event, the system

Fig. 2. Simulation of the model

is put back in the Free_Ball continuous mode. Note
there is also a Schedule relationship that connects the
Collision event to the getStuck event. The condition
for the scheduling to occur is shown graphically with
IF t > t_stuck, i.e., the event getStuck will be
scheduled after 0 time-units (because of the AFTER 0) if
t (time) is greater than the parameter t_stuck. The event
getStuck simply sets the speed to 0 and then moves the
system in the continuous Stuck mode. In this mode, the
behaviour of the ball is governed by the ODE

{
dy
dt = v
dv
dt = 0

This hybrid model defines a piecewise continu-
ous behaviour. The model in Figure 1 is automati-
cally compiled by AToM3 (see the next section) into
BouncingBallStuck.py, a representation suitable for
numerical simulation in a Python Hybrid Simulator devel-
oped at McGill University [3]. The simple user interface of
the simulator is shown at the top of Figure 2. A model file
(generated from the modelling environment) can be loaded.
This displays the model parameters and variables. Model
parameters as well as the most appropriate numerical solver
may be selected by the user. The result of the simulation is
shown at the bottom of Figure 2.



III. META-MODELLING IN ATOM3

A. Domain/Formalism-Specific Modelling

Domain- and formalism-specific modelling and simula-
tion environments have the potential to greatly improve
productivity. They are able to exploit features inherent to a
specific domain or formalism. This may for example enable
specific analysis techniques or the synthesis of efficient
code. They also maximally constrain the users, allowing
them, by construction, to only build syntactically and (for
as far as this can be statically checked) semantically correct
models. Furthermore, the specific, possibly visual syntax
used in domain-specific modelling environments matches
the users’ mental model of the problem domain.

The time required to construct such domain/formalism-
specific modelling and simulation environments can be
prohibitive. Thus, rather than using such specific envi-
ronments, generic environments are typically used. Such
generic environments are necessarily a compromise.

B. Meta-Modelling

A modelling language/formalism L is (by definition) the
set of all valid models in the language/formalism. The more
specific a language/formalism is, the smaller the set will be.
Note that a modelling language may contain an infinite (but
countable) number of models. The models in the language
may have a textual concrete syntax, a visual concrete syntax,
or a combination of the two.

Meta-modelling [4], [5], [6] is the explicit modelling of
a class of models, i.e., of a modelling language. A meta-
model ML of a modelling language L is a model in its own
right which specifies concisely and precisely which models
m are elements of L.

Modelling environments based on meta-modelling will
either check, by means of a meta-model ML whether a
given model m is in L, or they will constrain the modeller
during the incremental model construction process such
that only elements of L can be constructed. Note how the
latter approach, though possibly more efficient, due to its
incremental nature –of construction and consequently of
checking– may render certain valid models in L unreachable
through incremental construction.

The advantages of meta-modelling are numerous. Firstly,
an explicit model of a modelling language can serve as
documentation and as specification. Such a specification
can be the basis for the analysis of properties of models
in the language. From the meta-model, a modelling envi-
ronment may be automatically generated. The flexibility
of the approach is tremendous: new languages can be
designed by simply modifying parts of a meta-model. As
this modification is explicitly applied to models, the rela-
tionship between different variants of a modelling language
is apparent. Above all, with an appropriate meta-modelling
tool, modifying a meta-model and subsequently generating
a possibly visual modelling tool is orders of magnitude
faster than developing such a tool by hand. Ultimately,

even the transformations between meta-models (of variants
of modelling languages) may be explicitly modelled in the
form of graph grammar models.

As meta-models are models in their own right, they must
be elements of a modelling language (or put differently,
expressed in a particular formalism). This modelling lan-
guage can be modelled in a so-called meta-meta-model.
Note how the ‘meta’ qualifier is obviously relative to the
original model.

Though an arbitrary number of meta-levels are possible in
principle; in practice, some modelling languages/formalisms
such as Entity-Relationship diagrams (ER) and UML Class
Diagrams are expressive enough to be expressed in them-
selves. That is, the meta-model of such a language L is
a model in language L. From the implementation point
of view, this allows one to bootstrap a meta-modelling
environment.

Note that in the above presentation of meta-modelling,
a meta-model must specify all elements of a modelling
language. Traditionally, the concrete syntax of textual (pro-
gramming) languages has been specified in the form of
grammars. Similarly, grammars may be used to specify a
visual concrete syntax [7]. Often, a distinction is made be-
tween concrete and abstract syntax. The latter only specifies
the core structure of models. What goes into the abstract
syntax (and what not) is typically determined by what is
needed to describe model semantics. This separation be-
tween concrete and abstract syntax allows one (i) to specify
model semantics once for a whole class of languages, in
terms of abstract syntax and (ii) to graft a variety of concrete
textual and visual syntaxes onto a single abstract syntax.

Model semantics can be expressed in a variety of ways.
At the core of all specification lies model transformation.
If model transformations are modelled explicitly (by means
of graph grammars for example), model semantics too can
be expressed inside the (meta-)modelling framework.

C. Modelling HS in AToM3

The above meta-modelling concept has been imple-
mented in AToM3, A Tool for Multi-formalism and Meta-
Modelling. AToM3 is a vehicle for Computer Auto-
mated Multi-Paradigm Modelling (CAMPaM) [8], [9], [10]
in which multi-abstraction, multi-formalism, and meta-
modelling are combined. The design of AToM3 has been
described in [11], [12]. The power of AToM3 has been
demonstrated by meta-modelling the DEVS formalism [13],
Petri Nets and Statecharts [14], GPSS [15], Causal Block
Diagrams [16], and flow diagrams [17].

Figure 3 shows the model of the HS formalism (the meta-
model of HS models) in AToM3. In the top left corner of the
main window we notice that the Entity-Relationship (ER)
formalism is used to model the HS formalism. This means
that only valid ER models will by accepted by the tool.
Only two icons appear: Entity (a rectangle) and Relationship
(a diamond). The HS model is hence composed of only
these two constructs as well as of connections between



Fig. 3. The HS Meta-Model

them. In particular, one entity, Mode, is used to model
continuous modes whereas another, Event_HS, is used to
model discrete events. The relationships between the entities
(Mode_Transition, State_Guard, and Schedule)
together with their cardinalities determine which connec-

tions between instances of the entities are valid. To check
validity, a homomorphism between a model and its meta-
model must be checked: instances of entities must be
connected by instances of appropriate relationships. Note
how in Figure 3, both at a global (model) level and at the



level of individual entities and relationships, typed attributes
can be specified.

Up to now, only abstract syntax has been specified. In
AToM3, concrete visual syntax is specified as shown in the
bottom of the figure for the Mode and Event_HS entities.
Note how entity attributes may be rendered in the concrete
syntax.

From the above specification of the HS formalism (the
meta-model), a HS-specific visual modelling environment
is compiled. The environment was shown in Figure 1; Fig-
ure 4 shows examples of its dialog boxes. The environment
only allows the creation of valid HS models. With similar
forms in which the meta-model attributes were typed, the
compiled modelling environment can present the user with
appropriate forms for the user to enter the attributes in.

IV. MODEL TRANSFORMATION

The transformation of models is a crucial element in
model-based endeavours. As models, meta-models and
meta-meta-models are all in essence attributed, typed
graphs, we can transform them by means of graph rewriting.
The rewriting may be specified in the form of graph gram-
mar [18] models. These are a generalization, for graphs,
of Chomsky grammars. They are composed of rules. Each
rule consists of left hand side (LHS) and right hand side
(RHS) graphs. Rules are evaluated against an input graph,
called the host graph. If a matching is found between
the LHS of a rule and a sub-graph of the host graph,
then the rule can be applied. When a rule is applied, the
matching subgraph of the host graph is replaced by the
RHS of the rule. Rules can have applicability conditions,
as well as actions to be performed when the rule is applied.
Some graph rewriting systems have control mechanisms to
determine the order in which rules are checked. In AToM3

for example, rules are ordered according to a user-assigned
priority, and are checked from higher to lower priority.
After a rule matching and subsequent application, the graph
rewriting system starts the search again. The graph grammar
execution ends when no more matching rules are found.

Three kinds of transformations of models are of inter-
est. The first is model execution (defining the operational
semantics of the formalism). The second is model transfor-
mation into another formalism (expressing the semantics
of models in one formalism by mapping onto a known
formalism). A special case of this is when the target
formalism is textual. In this case it is possible to describe by
means of meta-modelling, the Abstract Syntax Graph of the
textual formalism (that is, the intermediate representation
used by compilers once they parse a program in text form),
in such a way that models in textual formalisms can then be
processed as graphs. The third one is model optimization,
for example reducing its complexity (maintaining pertinent
invariants however).

On the one hand, graph grammars have some advantages
over specifying the computation to be done in the graph
using a traditional programming language. Graph grammars

are a natural, formal, visual, declarative and high-level
representation of the computation. Computations are thus
specified by means of high-level models, expressed in the
graph grammar formalism. The theoretical foundations of
graph rewriting systems may assist in proving correctness
and convergence properties of the transformation tool. On
the other hand, the use of graph grammars is constrained by
efficiency. In the most general case, subgraph isomorphism
testing is NP-complete. However, the use of small subgraphs
on the LHS of graph grammar rules, as well as using node
and edge types and attributes can greatly reduce the search
space. This is the case with the vast majority of formalisms
of interest. It is noted that a possible performance penalty is
a small price to pay for explicit, re-usable, easy to maintain
models of transformation. In cases where performance is
a real bottleneck, graph grammars can still be used as an
executable specification to be used as the starting point for
a manual implementation. In the case of the HS formalism,
a graph grammar is used to specify the mapping of a HS
model onto a representation suitable for numerical simu-
lation by a Python Hybrid Simulator that was developed
previously [3].

V. CONCLUSION

This paper demonstrated how meta-modelling can make
the construction of domain/formalism specific modelling
environments straightforward. Using AToM3, a model of
a simple, rather contrived HS formalism was constructed,
which combines Event Scheduling constructs with Ordinary
Differential Equations. From this specification, an HS-
specific visual modelling environment was synthesized. For
the purpose of this demonstration, a particularly simple hy-
brid model of a bouncing ball was designed in this environ-
ment. It is envisioned that the future of modelling and sim-
ulation in general, and more specifically in hybrid systems
design lies in domain-specific Computer Automated Multi-
Paradigm Modelling (CAMPaM) which combines multi-
abstraction, multi-formalism and meta-modelling. The small
example presented in this article demonstrates the feasibility
of this approach. Another hybrid systems example of CAM-
PaM, with focus on model transformation can be found in
[19] and [20].

REFERENCES

[1] P. J. Mosterman and G. Biswas, “A comprehensive methodology for
building hybrid models of physical systems,” Artificial Intelligence,
no. 121, pp. 171–209, 2000.

[2] O. Balci, “The implementation of four conceptual frameworks for
simulation modeling in high-level languages,” in Proceedings of
the 1988 Winter Simulation Conference, M. Abrams, P. Haigh, and
J. Comfort, Eds. Society for Computer Simulation International
(SCS), 1988, pp. 287–295.

[3] S. Lacoste-Julien, “Hybrid systems modelling,” McGill Univer-
sity, School of Computer Science, Technical Report, August 2002,
http://msdl.cs.mcgill.ca/people/slacoste/
research/report/SummerReport.html.

[4] R. G. Flatscher, “Metamodeling in EIA/CDIF meta-metamodel and
metamodels,” ACM Transactions on Modeling and Computer Simu-
lation, vol. 12, no. 4, 2002.



Fig. 4. Editing the bouncing ball model

[5] E. Engstrom and J. Krueger, “A Meta-Modeler’s Job is Never Done:
Building and Evolving Domain-Specific Tools With DOME,” in
Proceedings of the IEEE International Symposium on Computer
Aided Control System Design, Anchorage, Alaska, September 2000,
pp. 83–88.

[6] G. Karsai, G. Nordstrom, A. Ledeczi, and J. Sztipanovits, “Specify-
ing Graphical Modeling Systems Using Constraint-based Metamod-
els,” in Proceedings of the IEEE International Symposium on Com-
puter Aided Control System Design, Anchorage, Alaska, September
2000, pp. 89–94.

[7] M. Minas, “Concepts and realization of a diagram editor generator
based on hypergraph transformation,” Science of Computer Program-
ming, vol. 44, pp. 157–180, 2002, see also the DIAGEN home page:
http://www2.informatik.uni-erlangen.de/DiaGen/.

[8] P. J. Mosterman and H. Vangheluwe, “Computer automated multi-
paradigm modeling,” ACM Transactions on Modeling and Computer
Simulation, vol. 12, no. 4, pp. 1–7, 2002, special Issue Guest
Editorial.

[9] H. Vangheluwe and J. de Lara, “Computer automated multi-paradigm
modelling: Meta-modelling and graph transformation,” in Winter
Simulation Conference, S. Chick, P. Sánchez, D. Ferrin, and D. Mor-
rice, Eds. IEEE Computer Society Press, December 2003, pp. 595
– 603, new Orleans, Louisiana.

[10] P. Mosterman and H. Vangheluwe, “Computer automated multi
paradigm modeling in control system design,” in IEEE International
Symposium on Computer-Aided Control System Design, A. Varga,
Ed. IEEE Computer Society Press, September 2000, pp. 65–70,
anchorage, Alaska.

[11] J. de Lara and H. Vangheluwe, “AToM3: A tool for multi-formalism
and meta-modelling,” in European Joint Conference on Theory
And Practice of Software (ETAPS), Fundamental Approaches to
Software Engineering (FASE), ser. LNCS 2306. Springer-Verlag,
April 2002, pp. 174 – 188, grenoble, France. [Online]. Available:
http://atom3.cs.mcgill.ca

[12] J. de Lara Jaramillo, H. Vangheluwe, and M. Alfon-
seca Moreno, “Using meta-modelling and graph grammars
to create modelling environments,” in Electronic Notes in
Theoretical Computer Science, P. Bottoni and M. Minas,
Eds., vol. 72. Elsevier, February 2003, 15 pages.

http://www.elsevier.nl/locate/entcs/volume72.html.
[13] A. Levytskyy, E. J. Kerckhoffs, E. Posse, and H. Vangheluwe,

“Creating DEVS components with the meta-modelling tool AToM3,”
in 15th European Simulation Symposium (ESS), A. Verbraeck and
V. Hlupic, Eds. Society for Modeling and Simulation International
(SCS), October 2003, pp. 97 – 103, delft, The Netherlands.

[14] J. de Lara and H. Vangheluwe, “Computer aided multi-paradigm
modelling to process petri-nets and statecharts,” in International
Conference on Graph Transformations (ICGT), ser. Lecture Notes
in Computer Science, vol. 2505. Springer-Verlag, October 2002,
pp. 239–253, barcelona, Spain.

[15] ——, “Using meta-modelling and graph grammars to process GPSS
models,” in 16th European Simulation Multi-conference (ESM),
H. Meuth, Ed. Society for Computer Simulation International (SCS),
June 2002, pp. 100–107, darmstadt, Germany.

[16] E. Posse, J. de Lara, and H. Vangheluwe, “Processing causal block
diagrams with graph-grammars in AToM3,” in European Joint Con-
ference on Theory and Practice of Software (ETAPS), Workshop
on Applied Graph Transformation (AGT), April 2002, pp. 23 – 34,
grenoble, France.

[17] J. de Lara and H. Vangheluwe, “Using AToM3 as a Meta-CASE tool,”
in 4th International Conference on Enterprise Information Systems
(ICEIS), April 2002, pp. 642 – 649, ciudad Real, Spain.

[18] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, Handbook
of Graph Grammars and Computing by Graph Transformation. Vol.
2: Applications, Languages, and Tools. World Scientific, 1999.

[19] J. de Lara, H. Vangheluwe, and M. Alfonseca Moreno, “Computer
Aided Multi-Paradigm Modelling of Hybrid Systems with AToM3,”
in Summer Computer Simulation Conference, A. Bruzzone and
M. Itmi, Eds. Society for Computer Simulation International (SCS),
July 2003, pp. 83 – 88, montréal, Canada.

[20] J. de Lara, E. Guerra, and H. Vangheluwe, “Meta-Modelling, Graph
Transformation and Model Checking for the Analysis of Hybrid
Systems,” in Applications of Graph Transformations with Industrial
Relevance (AGTIVE). LNCS, September 2003, p. 6, charlottesville,
Virginia, USA.


