
Combining SVM with graphical models for
supervised classification: an introduction to

Max-Margin Markov Networks

Simon Lacoste-Julien†

†Department of EECS
University of California, Berkeley

Berkeley, CA 94720-1770
slacoste à eecs.berkeley.edu

December 1, 2003

Abstract

The goal of this paper is to present a survey of the concepts needed to under-
stand the novel Max-Margin Markov Networks (M3-net) framework, a new formalism
invented by Taskar, Guestrin and Koller [TGK03] which combines both the advantages
of the graphical models and the Support Vector Machines (SVMs) to solve the problem
of multi-label multi-class supervised classification. We will compare generative models,
discriminative graphical models and SVMs for this task, introducing the basic concepts
at the same time, leading at the end to a presentation of the M3-net paper.

1

Contents

1 Introduction 2

2 Setting for multi-label multi-class classification 4
2.1 Example: Part-of-speech tagging . 4
2.2 Loss function and risk . 5
2.3 Computational Learning Theory . 6

3 Generative method 6
3.1 HMM example . 7
3.2 Analysis . 8

4 Discriminative Graphical Model 8
4.1 Features in Graphical Models . 8
4.2 Conditional Random Fields (CRF) . 9
4.3 Analysis . 11

5 Introduction to Support Vector Machines (SVM) 11
5.1 Max-margin linear classifier . 11
5.2 Lagrangian duality . 13
5.3 SVM dual and the Kernel trick . 15

6 Multi-class SVM 17
6.1 Analysis . 19

7 Max-Margin Markov Networks (M3 net) 19
7.1 Margin-based Structured Classification . 19
7.2 Key insight to obtain the factored dual . 20
7.3 General graphs and other issues . 22
7.4 Analysis and other related papers . 22

8 Conclusion 23

1 Introduction

In supervised classification learning, the goal is to learn a function which assigns (discrete)
labels to arbitrary objects, given a set of already assigned independent instances. This
framework has a vast number of applications ranging from part-of-speech tagging to optical
character recognition. In the past years, the state-of-the-art algorithm for this task has been
the Support Vector Machines (SVMs) [CV95, Vap99], an algorithm based on the maximiza-
tion of the margin of confidence of the classifier (where the margin is related to the minimal
distance between the points and the classifier in some Euclidean space). Their success was
due to their ability to use very high dimensional feature spaces (using the kernel trick) while

2

at the same time keeping strong generalization guarantees (from their max-margin property).
One caveat though was that SVMs can only assign one label at a time and its running time
is polynomial in the number of classes. This means that to jointly classify different objects,
one either has to use a joint label with an exponential number of classes (exponential in the
number of objects and thus intractable for SVM in general), or assume that the classification
of each object is made independently. The latter option was typically used, though it meant
that some precious information was lost in the case of structured data. For example, in the
case of optical character recognition for words (in English say), each character was classified
independently1. But by knowing the first and third character of the word (for example), one
could distinguish more easily the second character (if the classifier was hesitating between
‘aaa’ and ‘aba’, then it could choose ‘aba’ confidently because of the non-existence of the
pattern ‘aaa’ in English).

On the other hand, probabilistic graphical models [Jor98] provide a principled and ef-
ficient way to deal with structured data by taking advantage of the (potential) sparsity of
the interactions in a factored way. But they didn’t have yet the same generalization guar-
antees as SVMs, neither could they support very high dimensional feature spaces. So one
natural question to ask is whether or not there is a way to unify both approaches and get
the best of both worlds. That is, is it possible to have a SVM-like approach which could
deal also with structured data efficiently like graphical models do? The answer is yes, and
it was shown recently by Taskar, Guestrin and Koller in a paper which is going to appear at
NIPS 2003 [TGK03]. The new framework that they propose, Max-Margin Markov Networks
(M3-net), is a major breakthrough in the field of machine learning as it will open a whole
new set of problems on which people could apply SVMs efficiently.

In this paper, we will give an overview of the concepts needed to understand the advan-
tages of the M3-nets and how they are built. The background assumed is one provided by an
introductory graduate course on graphical models taught at UC Berkeley2. The review won’t
be exhaustive, neither comprehensive, but we hope that it can give the reader a somewhat
self-contained overview of the different ways to do multi-label multi-class classification. The
emphasis will be on the theory behind the M3-nets. We will provide concrete examples to
help the understanding of how to apply the different ideas, but they are not claimed to be
an efficient way to solve the given problem.

The paper is organized as follows. In section 2, we describe the setting of the problem
that we will be interested in, namely, multi-label multi-class classification. We present a
concrete example which will be used during the whole paper, and we describe a bit of the
computational learning theory to give some more precision about the goal in supervised
classification. In the next sections, we compare different approaches for multi-label classifi-
cation. We present the generative approach in section 3 using a HMM example. In section 4,
we illustrate the discriminative graphical model approach using a conditional random field.
In section 5, we give a somewhat more detailed exposition of binary SVMs, by presenting
the notion of margin, duality, kernel, and generalization bound. Section 6 describes how

1To be fair, we have to mention that the first benchmarks were done on digit recognition [SBV99] on US
postal codes, in which the independence assumption is more realistic.

2CS281a: see http://www.stat.berkeley.edu/%7Ebartlett/courses/241A-fall2003/index.html.

3

http://www.stat.berkeley.edu/%7Ebartlett/courses/241A-fall2003/index.html

to extend SVMs to the multi-class problem. Finally, we present the M3-net framework in
section 7, which reunites all the ideas of the preceding sections.

2 Setting for multi-label multi-class classification

We are interested in multi-label multi-class classification, that is, to a classification problem
where each label can take a finite number of values (multi-class), and where each (structured)
object can take a finite number of labels (multi-label). Thus the goal is to learn a function
(hypothesis) h : X → Y , where X is the set of (structured) objects (also called patterns)
that we want to classify with l labels, and where Y = Y1× . . .×Yl is the set of (structured)
labels (which is structured here as a vector of labels without loss of generality). In this paper,
we will assume for simplicity that each Yi has the same form, namely, Yi = {y1, . . . , yk}, for
some fixed k. The training of the classifier is made with a sample set S of n iid labelled
instances:

S =
{(

x(i),y(i) , t(x(i))
)}n

i=1
. (1)

where x ∈ X and y = (y1, ..., yk) ∈ Y , and where S is assumed to be drawn from a fixed
distribution DX×Y . Notice the use of the superscript to index the different training instances,
and the subscript to index the components of the joint label. Also, we use the notation t(x(i))
for the target value of x(i) so that we can distinguish it with other (arbitrary) values for y
later. This is not necessary when doing binary classification, but will be a real notation
convenience when dealing with M3-nets...

2.1 Example: Part-of-speech tagging

As a concrete example which will be used in the sequel, we look at the problem of labelling
a FAQ database as was presented in [MFP00]. An example of a labelled FAQ instance was
the following:

<head>X-NNTP-Poster: NewsHound v1.33

<head>

<head>

<head>Archive-name: acorn/faq/part2

<head>Frequency: monthly

<head>

<question>2.6) What configuration of serial cable should I use

<answer>

<answer> Here follows a diagram of the necessary connections

<answer>programs to work properly. They are as far as I know t

Here, each x = (x1, . . . ,xl) is a sequence of sentences; and each sentence xi is labelled by
yi ∈ Y = {head, question, answer, tail}. In this case, the data is inherently sequential and
it is clear that the label of a sentence doesn’t only depend on its words but also on what

4

happened in the previous sentences. For example, the empty line is labelled sometimes as
‘head’ and other times as ‘question’ in this excerpt.

Other examples of structured data classification are:

collective webpage classification where interlinked webpages are to be labelled collec-
tively [TAK02];

named entity recognition where the goal is to find and identify named entities (like
named organizations, persons, organizations, as well as temporal and monetary ex-
pressions) in a segmented text (and so there is a special ‘none’ label when a word is
not a named entity) [BSW99];

handwritten word recognition where characters are individually labelled inside a word [TGK03];

Thomas Dietterich gives a review of sequential data classification in machine learning in [Die02].

2.2 Loss function and risk

We need some way to evaluate the performance of the classifier. A useful tool is the loss
function3 L : X × Y × Y → [0,∞[, where L(x,y, h(x)) gives the cost of assigning the label
h(x) to the observation x given that the correct label is y [SS02, ch 3]. It is usually assumed
that L(x,y,y) = 0 so that the minimal value is 0 and attained by the correct labelling. In a
decision theoretic framework, the loss function is a negative utility function. A rational goal
then would be to minimize the total loss on the labels to be predicted. In the case where one
doesn’t know which objects it will have to classify in the future, it makes sense to minimize
the expected loss on future data, called the expected risk R[h] which is a functional of the
classifier h:

R[h] ,
∫

X×Y
L(x,y, h(x)) dD(x,y) (2)

Since we don’t know D, it is not possible in general to compute the expected risk. One has
to turn to approximations. A useful one, motivated by the Glivenko-Cantelli theorem4, is to
compute the empirical risk Remp[h], evaluated on the sample S of size n:

Remp[h] , 1

n

n∑
i=1

L
(
x(i), t(x(i)), h(x(i))

)
(3)

Vapnik discusses in [Vap99] how we can generalize the law of large numbers in function
space (with very strict conditions) to tell us when working with Remp[h] will be a good
approximation to R[h].

3Also called cost function [Die02].
4 which says that the sequence of empirical distribution functions for iid samples of size n converge

uniformly to the true distribution function as the sample size n goes to infinity (see [Dur96]).

5

2.3 Computational Learning Theory

Now that the goal is explicit, we can discuss important issues about how to choose a classifier.
The structure of the function space from X to Y can be quite unwieldy, so one usually restricts
h amongst a parameterized family F = {hw : w ∈ H}, where H is some parameter space
(usually a Hilbert space). The choice of F is very important: if it is too much expressive,
then there is a danger for the learner to overfit the training data (rote learn the data); if
it is not expressive enough, then it won’t be able to approximate the real function. This
qualitative statement is made explicit with the following Probably Approximately Correct
(PAC) bound; for any sample S of size n and threshold δ > 0, and for h ∈ A ⊆ H, the
following bound holds with probability at least 1− δ:

R[h] ≤ Remp[h] + Ω(A, n, δ−1) (4)

where Ω(A, n, δ−1) is a measure of the capacity of the parameter class A, which is related
to its expressiveness (we’ll present an example of expression for Ω in the case of Support
Vector Machines in equation (17)). The more expressive the parameter class, the bigger the
bound, and so this term characterizes the overfitting possibility5. The empirical risk, on
the other hand, represents the training error, and so if the parameter class is not expressive
enough, it won’t be possible to make it small. The compromise between expressiveness and
small training error is made by finding a parameter class A with small capacity but which
contains the parameter for a classifier hw which yields zero (or small) training error Remp[w].
The process of minimizing the RHS of equation (4) by iterating through different parameter
classes Ai of increasing capacity and finding the minimal training error achievable in each
class at each step is called structural risk minimization, and was proposed by Vapnik [Vap99].
The bound is not necessarily tight, and thus it doesn’t guarantee that a classifier with
higher bound will necessarily have worse generalization performance than another classifier
with lower bound. But it does provide of a more principled heuristic to choose classifiers.
And it also gives a theoretical bound on the generalization error for a given classifier which
doesn’t depend on specific assumptions about the (fixed) distribution D (the influence of D is
summarized in the empirical risk, which can be computed) and thus is quite robust about
the lack of knowledge of the type of the distribution D. We will see in section 5 how this has
motivated a powerful learning algorithm with nice generalization guarantees, the support
vector machine.

But before presenting it, we will have a quick look at different graphical model approaches
to do multi-label multi-class classification so that we can compare later their advantages and
drawbacks with the SVMs. We will start with the generative graphical model approach.

3 Generative method

In the generative approach, one builds a parameterized graphical model for the joint dis-
tribution PW(x,y) using some conditional independence assumptions about the problem at

5And trying to minimize the model class complexity is a formal version of Occam’s razor principle.

6

Figure 1: (naive) HMM graphical model for the FAQ problem. The definition of xi

and yi is given in section 2.1. The labels are hidden variables in the context of classification.
For the training part, all the nodes are observed (and we will have n iid copies of this graph).

hand. Using the training data, the hope is that if the modelling assumptions are good,
one will be able to find a parameter w which yields a good approximation to the real dis-
tribution D. Then to do classification, one can choose the most likely label by computing
hw(x) = arg maxy P (y|x,w), which can be efficiently computed using the Viterbi algo-
rithm [Jor03] on the graphical model (even if there is an exponential number of labels - that
is one of the great advantages of graphical models over SVMs).

3.1 HMM example

To illustrate the idea, we will come back to our FAQ database tagging example (see sec-
tion 2.1) and use a Hidden Markov Model (HMM). We will restrict our attention in this
paper to sequential data to simplify the notation, but we will discuss in section 7.3 how the
ideas can also be applied to arbitrary graphs. HMMs have been widely used in part-of-speech
tagging, amongst others, and a classical tutorial is given by Rabiner in [Rab89]. Figure 1
shows the HMM for the FAQ database problem. We can already see that we have made the
incorrect assumption that the line content was conditionally independent of the other labels
given its line label. This is wrong here since for example the blank line has a much higher
probability of happening for a line labelled ‘answer’ which was preceded by a ‘question’ than
for a line which was preceded by another ‘answer’. But we remind the reader that the point
here is not to construct an accurate model but rather to illustrate the different concepts.

With this model, the joint is thus:

P (x,y) = P (y1)
l−1∏
i=1

P (yi+1|yi)
l∏

i=1

P (xi|yi) (5)

where the implicit dependence on w was not shown in the notation (and we will keep this
convention for the remaining of the paper; each time there is a probability function or a
potential, it is assumed that it depends implicitly on a parameter w). The parameterization

7

of P (yi+1|yi) is usually a matrix; and P (xi|yi)
6 would normally (in the part-of-speech tagging

community) be a multinomial over a finite vocabulary, though here it would be intractable
since the number of possible sentences is pretty large... This indicates another disadvantage
of using the generative approach (we’ll see in section 4.1 how a ‘feature’ approach can solve
partly this problem). The training can be made (efficiently) using a maximum likelihood
(ML) estimate which decomposes nicely here since all the nodes are observed (we don’t need
to use EM). Once the model has been fitted on the training data, one can do classification
by computing

hw(x) = arg max
y

P (y|x,w) (6)

using the fact that P (y|x) ∝ P (x,y) for fixed x.

3.2 Analysis

As mentioned in [Jor03, ch 7], the generative approach can be efficient when we have accurate
prior knowledge of the true data-generating process D. On the other hand, it is suboptimal
in some sense since it tries to estimate accurately the joint P (x,y) when all we really need
for classification is P (y|x), or rather its maximum argument. The discriminative approach,
in comparison, models directly P (y|x) without any assumptions of what are the interactions
inside x, which are not needed in classification since x is given. This gives a more robust
approach since it uses weaker assumptions about the distribution. It is also well suited for
a feature-based approach, which we will present in the next section.

4 Discriminative Graphical Model

4.1 Features in Graphical Models

The usual definition of undirected graphical models uses arbitrary potentials on maximal
cliques. But as mentioned in [Jor03, ch 19], “large, fully-parameterized cliques are prob-
lematic both for computational reasons (inference is exponential in the clique sizes) and for
statistical reasons (the estimation of large numbers of parameters requires large amounts
of data)”. In practice, one will thus want to use a reduced parameterization for the clique
potentials. One way to do that is to use a feature approach with models in the exponential
family. For a given clique C (using the notation from [Jor03]), we define a set of (fixed)
features fi(xCi

) where Ci ⊆ C is a subset of the variables that the feature fi references and
where fi is an arbitrary real-valued function (though it is usually an indicator function).
The parameterized clique potential with parameter w is then written:

ψC(xC) , exp

(∑
j∈IC

wjfj(xCj
)

)
(7)

where IC is the index set for the features for the clique C. We thus see that the features
act as the sufficient statistics in the exponential family representation (see [Jor03, ch 8]).

6 called the class conditional (see [Jor03, ch 5,7]).

8

Figure 2: Conditional Random field for the FAQ problem. No assumption about the
structure of x is made (unlike in the generative framework), so that’s why x is linked with
all the label nodes. Compare with figure 1.

For a multinomial x, this parameterization is not restrictive since we could use one indicator
feature (and thus one parameter) for each possible assignment to x and obtain any potential.
But in general, we can use very sparse representations and this is advantageous both for
modelling reasons (one can build a potential by using a ‘divide and conquer’ approach to
identify individual (possibly overlapping) contributions and define a feature for each) and
also for computational reasons (sparser potentials).

4.2 Conditional Random Fields (CRF)

We now present conditional random fields (CRF), the state of the art amongst graphical
model discriminative methods for classification [LMP01]. CRFs model directly P (y|x) by
using feature-based parameterized potentials in an undirected graphical model. In the case
of sequential data where the graph is a chain, the potentials are:

ψ(yi, yi+1,x) , exp

(
d1∑

j=1

λjfj(yi, yi+1,x)

)

ψ(yi,x) , exp

(
d2∑

j=1

µjgj(yi,x)

)

with features fj and gj and parameters λj and µj (and where we use the usual convention
where the identity of the function can be found by the type of its arguments i.e. ψ(y1,x) 6=
ψ(y2,x) in general even if the value of y2 is the same as y1).

The CRF graphical model for the FAQ example is shown in figure 2. Here, no assumption
about the structure of x was made. For example, g3(y2 = ‘question’, x) could be the indicator
that “last line (1) was blank and this line (2) starts with a number”. Usually, the features
will be local in the chain though they don’t have to. One can start to see that this feature

9

framework is well-suited to model the FAQ tagging problem, and that’s why in fact we chose
this example7.

With this graphical model, the conditional P (y|x) is then:

P (y|x) =
1

Z(x)

l−1∏
i=1

ψ(yi, yi+1,x)
l∏

i=1

ψ(yi,x) (8)

where Z(x) is a normalization constant which depends on x. It is now worthwhile to study
the form of this conditional more in details. It was assumed in the example in [LMP01] that
the potentials were homogeneous along the chain and similarly in the M3-net paper [TGK03],
so we will use the same simplifying assumption. Now define the feature vector Fi(x, yi, yi+1)
as:

Fi(x, yi, yi+1) , (f1(yi, yi+1,x), . . . , fd1(yi, yi+1,x), g1(yi,x), . . . , gd2(yi,x))T ∈ Rd1+d2 (9)

and also (for notational convenience in the boundary case):

Fl(x, yl, yl+1) , (0, . . . , 0, g1(yl,x), . . . , gd2(yl,x))T ∈ Rd1+d2 (10)

then we define the joint feature vector

F(x,y) ,
l∑

i=1

Fi(x, yi, yi+1) (11)

With this notation, we can now easily see that the conditional is:

P (y|x) ∝ exp
(
wTF(x,y)

)
(12)

with w = (λ1, . . . , λd1 , µ1, . . . , µd2)
T and thus is a softmax function. It was mentioned

in [Jor03, ch 7] that generative models with class-conditionals and marginals in the ex-
ponential family yielded the softmax function for P (y|x) in general and thus we see that the
form chosen for the CRF parameterization is very general.

The training of a CRF is made as for other completely observed graphical models with
Maximum Likelihood. Since the graph is undirected, the ML optimization doesn’t separate
in local ML problems like in the directed case because of the presence of the normalization
term. The ML solution is found by using Iterative Proportional Fitting (IPF), which is exact
in the case where the graph is triangulated (see [Jor03, ch 9]). For feature based graphical
models, IPF is called Iterative Scaling and is described in [Jor03, ch 20]. An improved version
is described for CRF in [LMP01]. Finally, the classification is made like in the generative
case by computing (6).

7This example was taken from a paper on Maximum entropy Markov models (MEMMs) [MFP00], another
form of discriminative graphical models which was the ancestor of CRFs.

10

4.3 Analysis

CRF and other discriminative methods solve the problem of having to model x when it is
not needed, and so yield a more robust and efficient algorithm for classification than the
generative approach when one doesn’t have good prior knowledge about x.

On the other hand, it still can’t handle high dimensional features because the formal-
ism manipulates them directly (not like kernel-based methods which will be presented in
section 5.3). Moreover, the graphical model formalism doesn’t include the risk formulation
that we have presented in section 2.2. There are ways to relate the ML likelihood with the
empirical risk by defining the correct loss function (see [SS02, ch 3]), but ML doesn’t include
a regularization term and so we can’t obtain bounds on the expected risk like equation 4 (or
rather, we haven’t heard of). It was mentioned in [AH03] that sometimes a regularization
term is added to the log-likelihood for CRF in order to avoid overfitting the data. We didn’t
have the time to study more this approach, but it was claimed in [TGK03] that discrim-
inative methods don’t have yet the same generalization guarantees as SVMs. This makes
sense since the CRF framework doesn’t take into account the loss function explicitly, which
is what we want to optimize during learning. On the other hand, support vector machines
make direct use of the bound given in equation (4), yielding nice generalization guarantees.
We will now present a brief introduction to its concepts.

5 Introduction to Support Vector Machines (SVM)

5.1 Max-margin linear classifier

The Support Vector Machine (SVM) is a learning algorithm for a linear classifier which tries
to maximize the margin of confidence of the classification on the training data set. It was
described in [CV95] by Cortes and Vapnik. The classical tutorial paper usually quoted is
the one by Burges [Bur98], though it is now starting to get old. A gentle (and modern)
introduction is given by Cristianini and Schölkopf in [CS02]; and also in chapter 1 of [SS02].
The detailed story can be found in [Vap99], or in [CST00] at a more introductory level. We
will now try to outline quickly the main ideas behind SVMs.

We first consider the case where we want to classify x (which is assumed to lie in Rd)
amongst two classes in Y = {−1, 1}. A linear classifier will be an hyperplane in Rd charac-
terized by a normal w and an offset b. The binary classifier can be:

hw(x) = sgn(wTx + b). (13)

where sgn is the sign function which will take value 0 at 0, say, so that the classification
is ambiguous at this point. If the data is linearly separable, then it is possible to find an
hyperplane which will correctly satisfy all the points, that is, a (w, b) such that:

wTx(i) + b > 0 if t(x(i)) = 1

wTx(i) + b < 0 if t(x(i)) = −1

11

Figure 3: SVM: linear binary classifier. The separating hyperplane is in blue; the margin
hyperplanes are dotted. The data points which lie on the margin are called support vector.

for all (x(i), t(x(i))) in S, which can be written more succinctly as

t(x(i)) · (wTx(i) + b) > 0 ∀i. (14)

If this is the case, then we can rescale (w, b) so that the closest points to the hyperplane
(those which lie on the margin) satisfy |(wTx(i) + b)| = 1; we then obtain a canonical form
for (w, b) which satisfies (tightly) the inequality:

t(x(i)) · (wTx(i) + b) ≥ 1 ∀i. (15)

The geometry of this setting is shown in figure 3. It is not hard to see that given the
above constraints, the margin (that is, the minimal distance between the data points and
the hyperplane) has size 1/||w||. So if the goal is to maximize the margin, then we need to
minimize ||w||. This can be cast in an equivalent constraint optimization problem:

minimize

(w, b) ∈ Rd+1
1
2
wTw (16)

subject to t(x(i)) · (wTx(i) + b) ≥ 1 ∀i

Before solving this problem, let’s see why choosing a classifier by maximizing the margin is
a rational thing to do. One informal reason is that if we expect the Euclidean distance to
be representative of the dissimilarity between patterns (that is, similar patterns should be
close), then the bigger the margin, the more confidence we have in our classification (there
are no patterns of different classes which are close). Also, we expect the new patterns that
we want to classify to stay close to the ones that we have already observed (since the training
data should be representative of the real distribution), so the more room we have between
the two different classes, the less chance we have to have ambiguity in future classification.

A more formal argument, though, is that by only choosing hyperplanes which have max-
imal margin, we restrict a lot the size of the class of classifiers that we are considering (it’s
capacity), and so we are really minimizing the RHS of equation (4), which gives an upper

12

bound on the expected risk (note that here the empirical risk is 0 since we assumed that
the data was linearly separable). In fact, a measure of capacity which is defined in [Vap99]
is the Vapnik Chervonenkis (VC) dimension for a class of classifiers H. For the 0-1 loss
(which is 1 when the label is incorrectly classified and 0 otherwise), the bound Ω(A, n, δ−1)
in equation (4) can be written:

(
V · (log(2n/V) + 1) + log(4/δ)

n

)1/2

(17)

where V is the VC-dimension of the class of classifiers considered, and n is the size of the
sample. This bound is called the VC confidence (see [Bur98]) and we are presenting it here
just to give an idea of the kind of dependence on V and n that one can expect. Also, Vapnik
derived in [Vap99] an expression for the VC dimension of the class of linear classifiers with
specific margin which indicated that bigger margins yielded smaller error bound, thus giving
considerable justification for maximizing the margin.

Finally, we have to deal with the case when the data is not linearly separable. Then some
points x(i) can be at a distance ξi/||w|| on the wrong side of the margin hyperplane. We can
thus transform the constraint (15) to:

t(x(i)) · (wTx(i) + b) ≥ 1− ξi, ξi ≥ 0 ∀i (18)

If x(i) is misclassified, then the LHS of (18) is smaller than 0 and thus ξi has to be greater
than 1. This means that C

n

∑n
i=1 ξi is an upper bound on the 0-C average loss on the training

data (with a constant C > 0), that is, of Remp[h] for the 0-C loss (a cost of C for each error).
Following our goal of structural risk minimization (minimizing the RHS of (4)), we want to
minimize the sum of C

n

∑n
i=1 ξi (which is an upper bound on the empirical risk) and ||w||2,

which is related to Ω(h). The tradeoff between each contribution is encoded by the constant
C that the user can choose, with C = ∞ meaning that he can’t tolerate any error (its cost
is infinite). Hence, the learning algorithm will find the classifier (w, b) which satisfies the
following optimization problem on the training data:

minimize

(w, b), ξ
1
2
wTw + C

n

∑n
i ξi (19)

subject to t(x(i)) · (wTx(i) + b) ≥ 1− ξi, ξi ≥ 0 ∀i

In order to solve this constrained optimization problem, we can use the method of Lagrange
multipliers. As it is pretty crucial to the sequel, we now present a review of Lagrangian
duality.

5.2 Lagrangian duality

The general goal of duality in constrained optimization is twofold: to help to solve the
original problem; and to provide a certificate which guarantees that we have found the
optimal solution. The second goal is more of an issue in linear programming, though. Boyd

13

gives a nice treatment of Lagrangian duality in [BV04, ch 5]; and more details can be found
in [Ber99]. We will consider here the following (primal) constrained optimization problem:

minimize f(x) (20)

subject to fi(x) ≥ 0, i = 1, . . . , n

where x ∈ X for some arbitrary set X . Call p∗ the (global) solution to this problem.8 We
introduce the Lagrangian function L(x, α) with non-negative Lagrangian multipliers αi (also
called dual variables):

L(x, α) , f(x)−
n∑

i=1

αifi(x) (21)

For a feasible point x, fi(x) ≥ 0 and since αi ≥ 0 then we have that L(x, α) ≤ f(x) ∀x
feasible. Thus we have:

g(α) , inf
x

L(x, α) ≤ p∗ (22)

g(α) is called the dual function and yields a lower bound for the (primal) optimal solution
p∗ for each value of α ≥ 0. To get the best bound, we look at the maximal value d∗ for the
dual function:

d∗ , sup
α≥0

g(α) = sup
α≥0

inf
x

L(x, α) (23)

The (Lagrangian) dual problem is to compute d∗. By equation (22), we have that d∗ ≤ p∗

(always) which is called weak duality. When the primal problem satisfies certain regularity
conditions (e.g. it is convex and has a strictly feasible solution - this is Slater’s condition),
then d∗ = p∗ and strong duality is said to hold. This means that we can find the minimum
value for the primal by maximizing the dual. Moreover, if the dual function can be computed
with certainty, then a (saddle) point (α, x) which is feasible and satisfies g(α) = f(x) gives
the optimal value as well as a certificate.

There are several advantages to look at the dual problem. First of all, g(α) can usually
be computed easily since it is obtained from the unconstrained minimization of L(x, α) over
x. Moreover, g(α) is always convex as is explained in [BV04], and so it doesn’t have the
problem of having many different local minima.

In the case where all the functions are differentiable, there is a nice geometrical interpre-
tation for the optimal point. Figure 4 explains it (see [Ber99] for more details). If moreover
strong duality holds, then the Karush-Kuhn-Tucker (KKT) conditions give sufficient and
necessary conditions for (x∗, α∗) to be a saddle point of the Lagrangian (i.e. x∗ is primal
optimal and α∗ is dual optimal). They are

• (x∗, α∗) is feasible (i.e. fi(x
∗) ≥ 0 and αi ≥ 0);

• ∇xL(x∗, α∗) = ∇f(x∗)−∑n
i=1 αi∇fi(x

∗) = 0 (this is a generalization of what figure 4
showed but with more than one constraint);

8By convention, p∗ = −∞ if the feasible solutions are unbounded below and p∗ = ∞ if there is no feasible
solution. But we won’t go into those details.

14

Figure 4: Geometry of optimal point. (for one constraint case) ∇f has to be parallel
and in the same direction to ∇fi so that there is no direction of decrease which stays in the
feasible region; thus ∇f(x) = α∇fi(x) at the optimum x for some α ≥ 0.

• α∗i fi(x
∗) = 0 ∀i.

The last condition is called complementary slackness and indicates that the dual variables are
only non-zero for the active constraints (that is, the constraints for which fi(x

∗) = 0). In the
one constraint case, this can be seen as follows. If fi(x) > 0, then there is a neighborhood
around x which is still feasible. So if there is a local minimum in this region, it is an
unconstrained one and this implies ∇f(x∗) = 0. If ∇fi(x

∗) 6= 0 (which is the case for
non-degenerate constraints), then the second KKT condition implies that αi = 0.

5.3 SVM dual and the Kernel trick

We are now in position to do a very useful transformation on the primal problem (19). We
first introduce the non-negative dual variables αi and βi and construct the Lagrangian:

L(w, b, ξ, α, β) =
1

2
||w||2 +

C

n

n∑
i=1

ξi −
n∑

i=1

αi

(
t(x(i)) · (wTx(i) + b)− 1 + ξi

)−
n∑

i=1

βiξi (24)

We can now find the dual function g(α, β) by minimizing (without constraint) the Lagrangian
with respect to (w, b, ξ). From ∂L/∂w = 0 we get

w =
n∑

i=1

t(x(i))αix
(i) (25)

and thus we see that the maximal margin hyperplane w can be written as a linear combi-
nation of the data points. The vectors for which αi 6= 0 are called the support vectors, and
by the KKT complementary condition αi

(
t(x(i)) · (wTx + b)− 1 + ξi

)
= 0, they will lie at a

distance ξi/||w|| on the wrong side of the margin hyperplane.

15

The two other partials of L with respect to ξ and b yield the constraints9

∂L

∂ξi

= 0 ⇒ αi =
C

n
− βi (26)

∂L

∂b
= 0 ⇒

n∑
i=1

t(x(i))αi = 0. (27)

Substituting this solution back in (24), we get the dual function:

g(α, β) =
n∑
i

αi − 1

2

n∑
i

n∑
j

t(x(i))t(x(j))αiαj(x
(i) • x(j)) (28)

Since βi doesn’t appear in the objective function, we can combine the constraints (26)
and (27) together (with βi ≥ 0) to obtain the equivalent constraint C/n ≥ αi ≥ 0. Since
the primal problem was convex and strictly feasible, we can find its solution by equivalently
solving the dual problem (by strong duality):

maximizeα

∑n
i αi − 1

2

∑n
i

∑n
j t(x(i))t(x(j))αiαj(x

(i) • x(j))

subject to
∑n

i t(x(i))αi = 0 (29)
C
n
≥ αi ≥ 0 ∀i

The optimal classifier is then given by:

hα(x) = sgn

(
n∑

i=1

t(x(i))αi(x
(i) • x)

)
(30)

The change of formulation from the primal to the dual has two advantages. First of all, we
obtained a quadratic program (29) that generic packages can solve (the primal was also a QP
though its structure was slightly more complicated). There is even a simple special purpose
algorithm for this formulation called Sequential Minimal Optimization (SMO) which simply
does coordinate ascent in the objective function by solving analytically the optimization
problems with all variables fixed except a pair (see [CST00, ch 7]).

The other advantage, which is even more remarkable, is that the data only enters in the
formulation as dot products. This is a tremendous advantage since this means that we don’t
need to keep track of the individual components of the vectors; all we need is how they dot
themselves with the other vectors. The crucial point is that dot product in submanifolds
of space of very high dimensions can be carried out efficiently (if the submanifold has small
enough intrinsic dimension). We can thus map our input vector x to a feature space H
with a feature map x 7→ F(x) ∈ H where H can be very high dimensional (even infinite
dimensional). This mapping is called the kernel trick. The dot product in the new space is

9Strictly speaking, the Lagrangian is linear in ξ and b and so is unbounded unless its derivative with
respect to those variables is zero. So formally, the dual function takes value −∞ for values of ξ and b for
which the slope is not zero.

16

given by a kernel function k(x,x′) = F(x) • F(x′) which can be computed in the original
space.

As an example of kernel, consider the kernel

k(x,x′) = (x • x′)2 =

(
n∑

i=1

xix
′
i

)2

=
n∑

i=1

n∑
j=1

xixjx
′
ix
′
j

=

(n,n)∑

(i,j)=(1,1)

(xixj)(x
′
ix
′
j) = F(x) • F(x′)

if F(x) = (xixj)
(n,n)
(i,j)=(1,1) is the feature map, which amounts to map the original vector x

to all its monomials of degree 2 (and thus a space of dimension
(

n+1
2

)
). The kernel can be

computed in linear time, even if the feature space has a quadratic number of coordinates.
Similarly, we can show that the kernel k(x,x′) = (x •x′)d amounts to map a vector to all its
monomials of degree d (there are

(
n+d−1

d

)
of them!).

The advantage of mapping the data to high dimensional feature space is that a linear
boundary in the feature space can correspond to an arbitrary non-linear boundary in the
original space. SVM with the kernel trick can thus learn a very rich class of functions. But
because of the strict max-margin criterion for the choice of classifier, it still doesn’t suffer
from the curse of dimensionality.

The kernel computes the distance in the feature space and is thus a measure of dissim-
ilarity. The design of kernels which represent well the underlying interactions has become
an art. They can be created by starting first from a feature map; or by defining the kernel
directly; or by constructing it from other kernels.

6 Multi-class SVM

Now that we have seen how SVMs can be used to do binary classification, we have to
consider how they are adapted to do multiway classification. The approach which is often
used (and works well in practice) is to simply train k binary classifier (independently) which
will each learn to recognize one class vs. the rest (and is thus called the one versus the rest
approach [SS02, ch 7]). Then the winner class can be chosen with

h(x) = arg max
j∈{1,...,k}

ŵT
j x + bj (31)

where each (ŵT
j , bj) is the hyperplane for the class j and ŵj is normalized. This classifier

amounts to choose the class of which its binary hyperplane is the farthest (in signed Euclidean
distance) from the point that one wants to classify. This makes sense since the farther from
the plane it is, the more confidence you have in the classification. Figure 5 gives an example
of multiway classification using one vs. rest hyperplanes.

17

Figure 5: Multi-class SVM. Each plane separates one class with the rest with an optimal
margin. The class of a point is finally given by the farthest plane to it (if it is on the negative
side of all the planes, it is assigned to the closest plane (since this is negative distance) - or
sometimes the classification is just rejected to improve accuracy).

A theoretical problem with this approach is that the binary classifier are trained inde-
pendently and thus can’t ‘cooperate’. For example, it could be advantageous to sacrifice the
accuracy on a really bad class if the resulting global classifier is still more accurate by the
ways of interaction of the data. This is not possible with the one vs. rest approach.

Other approaches are to use pairwise classification; or to train jointly the binary classifiers
with a joint objective function. It was mentioned in [SS02, ch 7] that pairwise or joint
classification didn’t improve much the results of one vs. rest in practice. But to generalize
the setting to multi-label classification, one has to consider the joint objective function.
This was presented first in [WW99] and then more thoroughly in [CS01]. We will present
the approach with the notation of M3-net instead of repeating it twice (once for the single-
label case; once for the multi-label case). Before moving to the M3-net, we will analyze how
multi-label multi-class classification was done with SVM before the creation of M3-net.

The one vs. rest approach learns a binary classifier for each class. In the case of a joint
label, the number of classes is exponential in the number of labels, and so it is intractable
in general to do the labelling jointly. It was normally assumed that each labelling was
independent. Figure 6 shows the corresponding graphical model for the FAQ problem. So
in this case the classifier would be:

yi = hi(xi) = arg max
j∈{1,...,k}

ŵT
ijxi + bij (32)

18

Figure 6: SVM model for the FAQ problem. The labels are assumed to be independent.

6.1 Analysis

The advantages of the SVM approach is the possibility to use high dimensional feature
spaces (using the kernel trick). For the FAQ tagging problem, one could use very rich
feature functions of the sentences, richer than in the CRF model. Also, the max-margin
approach gives theoretical bound on the generalization error. On the other hand, the SVM
here doesn’t exploit the structure of the labels, which was found to be crucial in this case as
explained in section 3.1. This last part is what the M3-net formalism will solve.

7 Max-Margin Markov Networks (M3 net)

7.1 Margin-based Structured Classification

The M3-net uses a CRF to parameterize in a factored way the conditional distribution
P (y|x), i.e.

P (y|x) ∝ exp
(
wTF(x,y)

)
(33)

exactly like in (12) and with the feature vectors defined in (11). wTF(x,y) is called the dis-
criminant function, and can be seen as the measure of compatibility between the observation
sequence x and the joint label y [AH03]. The corresponding classifier is thus

hw(x) = arg max
y

wTF(x,y) (34)

We now want to include some kind of max-margin argument in the training part and thus we
don’t use the usual Maximum Likelihood estimate for CRF. Like we had discussed before,
we are not interested in the exact form of P (y|x), we are rather interested in the classifier
arg maxy wTF(x,y) and with what confidence the classification is done. Note that in the
single label case, we can recover equation (32) from (34) by defining w = (wT

1 , ...wT
k)T and

F(x, j) = (0, 0, 0, . . . ,xT
j , 0, 0, . . . , 0)T and augmenting x by the constant coordinate one to

obtain homogeneous coordinates.

19

A suitable notion of margin in this case is the difference between the value of the dis-
criminant for the true label with the value of the best runner up. If the data is linearly
separable, we can rescale w so that the minimal difference is 1 (similar to equation (15)).
The respected margin constraint is thus:

wTF(x, t(x)) ≥ 1 + wTF(x,y), ∀y 6= t(x), ∀x ∈ S (35)

and we see here the convenience of having defined the target function t(x). Again, for the
case of non-separable data, we introduce the non-negative slack variables ξx (one for each
element of the sample). We also define ∆Fx(y) = F(x, t(x))−F(x,y) for brevity of notation.
The constraint (36) then becomes:

wT ∆Fx(y) ≥ 1− ξx, ∀y 6= t(x), ∀x ∈ S (36)

Finally, Taskar et al. in [TGK03] suggests the use of a margin which should be proportional
to the number of individual errors ∆tx(y) ,

∑l
i=1 I {yi 6= (t(x))i} made inside a label. This

amounts to define a loss function which is proportional to the number of individual label
errors (with constant of proportionality C). Similarly as for the binary SVM case, we will
then have that C

n

∑
x∈S ξx will be an upper bound for the empirical risk according to this

loss function.
With all those modifications, the max-margin framework for M3-net thus becomes:

minimize

w, ξ
wT w

2
+ C

n

∑
x∈S ξx (37)

subject to wT ∆Fx(y) ≥ ∆tx(y)− ξx, ∀x ∈ S, ∀y
Note that the constraint ξx ≥ 0 is included by the case when y = t(x). As in the usual SVM
approach that we have described in section 5.3, we can derive the dual formulation of this
problem by minimizing the Lagrangian with respect to w and ξx and then substituting back
the solution to get the dual objective function to maximize. Here, there was one constraint
for each x ∈ S and y and so we introduce the dual variables αx(y). The derivations are
pretty similar to the standard case, and so we only quote the result:

maximize

αx(y)

∑
x,y αx(y)∆tx(y)− 1

2

∑
x,y

∑
x′,y′ αx(y)αx′(y

′)(∆Fx(y) •∆Fx′(y
′)) (38)

subject to
∑

y αx(y) = n−1C, ∀x ∈ S; αx(y) ≥ 0 ∀x ∈ S, ∀y
Up to this point, there was not much anything new. This derivation was an almost exact
adaptation of the formulation of Crammer and Singer given in [CS01], but for the multi-label
case. The result here is an optimization problem with an exponential number of variables
and constraints, and thus doesn’t seem to be practical.

7.2 Key insight to obtain the factored dual

But we haven’t used the fact yet that we had sparse correlations in the feature representation.
How can we do that? The key insight was to notice, like was already mentioned in [CS01] for

20

the single-label multi-class formulation, that the dual variables αx(y) satisfy the constraints
of an unormalized joint probability distribution over y. We can thus try to marginalize them
to obtain only the relevant clique marginals respecting the structure of the graph. Indeed,
because of the structure of the objective function, the dual variables will ‘factorize’ in
exactly the same way as the feature functions. For our example with sequential labels,
using equation (11) for the definition of the joint feature vectors, we obtain that

∆Fx(y) =
l∑

i=1

∆Fi(x, yi, yi+1) (39)

and thus by pushing the sum inward (like in variable elimination in graphical models), we
obtain that ∑

x,y

∑

x′,y′
αx(y)αx′(y

′) (∆Fx(y) •∆Fx′(y
′)) =

∑

x,x′

l∑
i=1

l∑

i′=1

∑
yi,yi+1

∑
yi′ ,yi′+1

(∆Fi(x, yi, yi+1)•∆Fi′(x
′, yi′ , yi′+1)

 ∑

y∼[yi,yi+1]

αx(y)

 ∑

y′∼[yi′ ,yi′+1]

αx′(y
′)

where y ∼ [yi, yi+1] denotes a full assignment y consistent with the partial assignment yi,
yi+1. We see that most of the (exponential) sum is simply doing a marginalization over the
dual variable. So it makes sense to define the marginal dual variables

µx(yi, yi+1) ,
∑

y∼[yi,yi+1]

αx(y)

µx(yi) ,
∑

y∼[yi]

αx(y)

. Then the objective function depends only on (a polynomial number of) those, because
of the factorization of the features. We have thus transformed an exponential sum into a
polynomial sum! But it is not clear that we could obtain an equivalent formulation using
the dual marginals. For each dual marginal assignment, we want to be able to construct a
joint distribution. In the case of a tree, this can always be done if the marginals satisfy the
consistency condition: ∑

yi

µx(yi, yi+1) = µx(yi+1) (40)

In the case of general triangulated graphs, we can define consistency conditions for the clique
marginals at their separator set from a junction tree which will also be sufficient to define a
joint (see [CDLS99]). For non triangulated graphs, though, there is no clear way to define
consistency conditions to ensure the existence of a joint.

Given those additional consistency conditions, we can thus define the factored dual for-
mulation:

maximize

µx(yi, yi+1), µx(yi), 1 ≤ i ≤ l

∑
x

l∑
i=1

∑
yi

µx(yi)∆tx(y) (41)

21

−1

2

∑

x,x′

∑

i,i′

∑

(yi,yi+1),(yi′ ,yi′+1)

µx(yi, yi+1)µx′(yi′ , yi′+1)(∆Fx(yi, yi+1) •∆Fx′(yi′ , yi′+1))

subject to
∑
yi

µx(yi, yi+1) = µx(yi+1),
∑
yi

µx(yi) = n−1C, µx(yi, yi+1) ≥ 0

which is now a simple quadratic program with a polynomial number of variables! Because
each feasible point of the factored dual problem is also a feasible point for the dual (we can
define a joint from the consistent marginals), and vice versa; and that the objective functions
are the same; then we see that the two problems are equivalent. Finally, we can find back
the primal solution from the dual variables as usual:

w =
∑
x

l∑
i=1

∑
yi,yi+1

µx(yi, yi+1)∆Fx(yi, yi+1) (42)

and this formulation can also make use of the kernel trick as everything is expressed in terms
of dot products.

7.3 General graphs and other issues

We have presented all the models in this framework by using a sequential example (for
simplicity), but all the given frameworks apply also for arbitrary graph structure on the
labels (the notation just becomes a bit more messy). In the case of the M3-net, we have
said that if the graph is triangulated, then we can easily build the factor dual by defining
the clique marginals with the consistency conditions on the separator sets. If the graph is
non-triangulated, then [TGK03] presents an approach to triangulate it and still obtain an
equivalent optimization problem (but with a number of new constraints exponential in the
size of the cliques). They mention at the same time that trying to optimize (41) with only
local consistency conditions (not the triangulated version) amounts to optimize the objective
function on an approximation of the marginal polytope.

Taskar et al. also presents in the paper [TGK03] an adapted version of SMO to solve
the optimization problem more efficiently than generic QP solvers. Finally, they prove a
generalization bound on the expected risk in a similar fashion than in the SVM case, using
their max-margin approach.

7.4 Analysis and other related papers

We have seen that M3-nets can model joint labels efficiently using the CRF formalism; can
use the kernel trick in the optimization problem arising from their max-margin criteria;
and have generalization guarantees. Taskar et al. presented in [TGK03] some experimental
comparisons between different classification approaches for handwritten word recognition
with their M3-net approach. M3-net outperforms them consistently (of course); but some
people have criticized their implementation of the other algorithms (CRF, etc.), and so more
test would be warranted just as a consistency check.

22

This year, Altun et al. have developed a similar setting for multi-label, multi-class
classification (in the sequential case) called Hidden Markov Support Vector Machines (HM-
SVM) (see [ATH03] and [AH03]). They also used CRF and presented a parallel development
to the one of the M3-net paper until the dual formulation of their max-margin problem
(equation (38)). They haven’t cast it exactly in the same form and so haven’t noticed that
the dual variables could be seen as joint distributions. Their approach was then to try to
use heuristics to solve this problem with an exponential number of constraints, with hope
that in practice only tiny portion of the constraints will be relevant. Their results were only
on very small data set, though, and so nothing can be inferred for now. A SVM approach
to multi-label classification was also presented in [EW01], though we haven’t had the time
to look at it thoroughly.

8 Conclusion

We have given a survey of different methods to do multi-label, multi-class classification.
Generative models can be efficient if one has very good prior knowledge about the problem,
though they are in general suboptimal and non-robust because of their modelling assump-
tions. Discriminative graphical models like CRFs can model efficiently the structure of the
labels, and are not suboptimal like the generative models, but they don’t have the general-
ization guarantees of SVMs and the possibility to use the kernel trick. We have presented
SVMs as a max-margin linear classifier, using the notion of duality to obtain a formulation
which can be kernelized. SVMs have good generalization guarantees and can make use of
the high dimensional feature spaces, but don’t handle interactions between the label in the
multi-label case. Finally, M3-net provides both the advantages of CRFs and SVMs, by using
a key transformation in the standard max-margin framework of a multi-label SVM inspired
by CRFs. The crucial point was that the dual variables would factor as the feature vectors.
Taskar et al. also made sure to adapt the standard results for SVMs to their new framework
by presenting an efficient algorithm for the learning part (SMO) and by giving a bound on
the expected risk (generalization error). There was also a discussion of how to use them for
arbitrary graphical structure. This framework will open the max-margin based methods to
a whole new set of problems with structured data. Interesting research directions for M3-net
in the future could be, apart more experimental results, to look at how they could apply it
to learn the network structure, or to deal with hidden variables.

Acknowledgements

This paper is submitted as a class project for Peter’s Bartlett Statistical Learning Theory
class at UC Berkeley in Fall 2003. I would like to thank Peter Bartlett for the suggestion
of topic as well as some interesting discussions about computational learning theory. I also
thank Ben Taskar and Carlos Guestrin for having kindly accepted to answer my questions
about their paper.

23

References

[AH03] Yasemin Altun and Thomas Hofmann. Large margin methods for label sequence
learning. In 8th European Conference on Speech Communication and Technology
(EuroSpeech), 2003. 4.3, 7.1, 7.4

[ATH03] Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden Markov
support vector machine. In Proceedings of the Twentieth International Conference
on Machine Learning (ICML), Washington DC, 2003. 7.4

[Ber99] D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2nd
edition, 1999. 5.2, 5.2

[BSW99] Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that
learns what’s in a name. Machine Learning Journal Special Issue on Natural
Language Learning, 34:211–232, 1999. 2.1

[Bur98] Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998. 5.1, 5.1

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004. Note published yet; available from
http://www.stanford.edu/˜boyd/cvxbook.html. 5.2, 5.2

[CDLS99] Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J. Spiegel-
halter. Probabilistic Networks and Expert Systems. Statistics for Engineering and
Information Science. Springer, New York, NY, 1999. 7.2

[CS01] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2:265–292,
2001. 6, 7.1, 7.2

[CS02] Nello Cristianini and Bernhard Schölkopf. Support vector machines and kernel
methods: The new generation of learning machines. AI Magazine, 23(3):31–41,
2002. 5.1

[CST00] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge University Press,
2000. 5.1, 5.3

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learn-
ing, 20(3):273–297, 1995. 1, 5.1

[Die02] Thomas G. Dietterich. Machine learning for sequential data: A review. In Lecture
Notes in Computer Science. Spinger-Verlag, 2002. 2.1, 3

[Dur96] R. Durrett. Probability: theory and examples. Duxbury Press, Belmont, CA,
second edition, 1996. 4

24

http://www.stanford.edu/~boyd/cvxbook.html

[EW01] Andre Elisseeff and Jason Weston. Kernel methods for multi-labelled classification
and categorical regression problems. Technical report, Biowulf Technologies, 2001.
7.4

[Jor98] Michael I. Jordan, editor. Learning in Graphical Models. MIT press, Cambridge,
MA, 1998. 1

[Jor03] Michael I. Jordan. An introduction to probabilistic graphical models. Book in
preparation, 2003. 3, 3.2, 4.1, 4.1, 6, 4.2

[LMP01] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proc.
18th International Conf. on Machine Learning, pages 282–289. Morgan Kauf-
mann, San Francisco, CA, 2001. 4.2, 4.2, 4.2

[MFP00] Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum entropy
Markov models for information extraction and segmentation. In Proc. 17th In-
ternational Conf. on Machine Learning, pages 591–598. Morgan Kaufmann, San
Francisco, CA, 2000. 2.1, 7

[Rab89] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989. 3.1

[SBV99] Bernhard Schölkopf, Christopher Burges, and Vladimir Vapnik. Incorporating
invariances in support vector learning machines. In Proceedings, International
Conference on Artificial Neural Networks, Berlin, 1999. Springer-Verlag. 1

[SS02] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vec-
tor Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge,
MA, 2002. 2.2, 4.3, 5.1, 6, 6

[TAK02] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for
relational data. In Proceedings of the Eighteenth Conference on Uncertainty in
Artificial Intelligence, San Francisco, CA, 2002. Morgan Kaufmann. 2.1

[TGK03] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks.
To appear in Neural Information Processing Systems Conference (NIPS03), Van-
couver, Canada, December 2003. (document), 1, 2.1, 4.2, 4.3, 7.1, 7.3, 7.4

[Vap99] V. Vapnik. The Nature of Statistical Learning Theory. Statistics for Engineering
and Information Science. Springer, New York, NY, 1999. 1, 2.2, 2.3, 5.1, 5.1, 5.1

[WW99] J. Weston and C. Watkins. Support vector machines for multiclass pattern recog-
nition. In Proceedings of the Seventh European Symposium On Artificial Neural
Networks, 4 1999. 6

25

	Introduction
	Setting for multi-label multi-class classification
	Example: Part-of-speech tagging
	Loss function and risk
	Computational Learning Theory

	Generative method
	HMM example
	Analysis

	Discriminative Graphical Model
	Features in Graphical Models
	Conditional Random Fields (CRF)
	Analysis

	Introduction to Support Vector Machines (SVM)
	Max-margin linear classifier
	Lagrangian duality
	SVM dual and the Kernel trick

	Multi-class SVM
	Analysis

	Max-Margin Markov Networks (M3 net)
	Margin-based Structured Classification
	Key insight to obtain the factored dual
	General graphs and other issues
	Analysis and other related papers

	Conclusion

