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Bayesian methods

Model
θ

Data
X

Prob. Theory

Statistics

p(x | θ) “Frequentist”: Bag of tools to estimate θ̂:
MLE, regularized MLE, max entropy, moment
matching, ERM, ...

“Subjective Bayesian”: Use probabilities
everywhere there is uncertainty

p(θ | data) ∝ p(data | θ)p(θ)

Posterior Likelihood Prior
Caricature:

Bayesian is “optimist”: they think you can get “good” models⇒ obtain a method by doing inference in a model
Frequentist is “pessimist”: they use analysis tools
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Example: biased coin

Recall from lecture 4

Xi
i = 1, . . . , n

θ

α0, β0

Xi | θ
iid∼ Bernoulli(θ)

p(xi | θ) = θxi(1− θ)1−xi

θ | α0, β0 ∼ Beta(α0, β0)

Hyperparameters
for the prior
e.g., θ ∼ Uniform([0, 1]) = Beta(1, 1)

Posterior:

p(θ | x1:n) ∝

( n∏
i=1

p(xi | θ)

)
p(θ)

= θ
∑

i xi(1− θ)n−
∑

i xiθα0−1(1− θ)β0−1
1[0,1](θ)

≜ n1

p(θ | x1:n) = Beta(θ | α0 + n1, β0 + n− n1)

conjugate prior to the
Bernoulli likelihood model
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Conjugate priors

Conjugate family

Consider a family of distributions on θ: F = {p(θ | α) | α ∈ A}
We say that F is a conjugate family to the observation model p(x | θ) if for any x ∼ X | θ,
the posterior p(θ | x, α) ∈ F .

i.e., there exists some α′(x, α) ∈ A s.t. p(θ | x, α) = p(θ | α′)

Examples

Biased coin (Lecture 4): the Beta prior is conjugate to the Bernoulli likelihood model.
Homework 1: the Dirichlet prior is conjugate to the multinomial likelihood model.

3 / 21



Conjugate priors

Sidenote: if you use a conjugate prior in a DGM, then Gibbs sampling can be easy

e.g., this is the case in LDA topic model

wi,dzi,dθdα

β

i = 1, . . . , nd

d = 1, . . . ,D

documents

Parameters
V× K

Words

TopicsTopic
proportion

θd ∼ Dir(α)
θd ∈ ∆K
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Model Selection



Model selection

Model selection: selecting different hyperparameters, models, etc...
Say we want to choose between 2 DGM

X1

X2 X3

θ1

θ2 θ3

X1

X2 X3

θ1

θ̃3

θ2

p(x3 | x1; θ3) p(x3 | x1, x2; θ̃3)

M1 M2

Note here that “M1 ⊆ M2”

As a frequentist

θ̂MLE
M1

= arg max
θ1,θ2,θ3

log p(data | θ1, θ2, θ3, “model = M1”)

θ̂MLE
M2

= arg max
θ1,θ2,θ̃3

log p(data | θ1, θ2, θ̃3, “model = M2”)

“cavalier notation”

Different space
than θ3

How to choose between models?
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Model selection

How to choose between models?

X1

X2 X3

θ0

θ1 θ2

X1

X2 X3

θ0

θ̃2

θ1

p(x3 | x1; θ2) p(x3 | x1, x2; θ̃2)

M1 M2

We can’t compare

log p(data | θ̂MLE
M1

,M = M1) log p(data | θ̂MLE
M2

,M = M2)vs.

because LHS ≤ RHS, sinceM1 ⊆ M2

i.e. you would always choose the “bigger model”

As a frequentist:

Use cross-validation

Use a validation set
i.e. log p(test data | θ̂MLE

Mi
(train data),M = Mi)
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Bayesian model selection

True Bayesian: sum over models (integrate out uncertainty aboutM)
Introduce a prior over models p(M)

p(xnew | D) =
∑
M

p(xnew | D,M)p(M | D)

=
∑
M

[ ∫
ΘM

p(xnew | θ,M)p(θ | D,M)dθ
]
p(M | D)

Standard Bayesian predictive
distribution for one model

posterior on θ given
dataD and modelM

model averaging: sum
over posterior over models

How to obtain the posterior p(M | D) or p(M, θ | D)?
variational inference, (RJ)MCMC, etc...
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Marginal likelihood

Posterior over models: p(M | D) ∝ p(D | M)p(M)∫
ΘM

p(D | θ,M)p(θ | M)dθ

Likelihood

p(D | M) =marginal likelihood

How to compute the marginal likelihood

Closed form with parametric assumptions (e.g., using conjugate priors)
Use approximations: variational inference, sampling, etc...
Simple approximation: Bayesian information criterion
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Empirical Bayes

In model selection, we are forced to pick one model
Pick the model that maximizes p(M | D) ∝ p(D | M)p(M)

To compare models, look at

p(M = M1 | D)

p(M = M2 | D)
=

p(D | M1) p(M1)

p(D | M2) p(M2)

Bayes factor Prior ratio

If “uniform prior” over models, then pick by p(D | Mi)
among KmodelsM1, . . . ,MK

When the number of models is “small”, this approach is “fine”
(i.e., it won’t overfit)

Empirical Bayes

Type II
Maximum Likelihood

or
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Empirical Bayes
Zoubin’s cartoon: suppose “M1 ⊆ M2 ⊆ M3”

D

p(D | M1)

p(D | M2)

p(D | M3)

Dobs

p(D | M)

p(D | θ̂MLE(D),M)

vs.

can overfit badly

normalized overD

But type II ML can still overfit if we have
too many models

e.g., p(D | M) = δ(D | M)

DM1 M2 M3 M4 M5
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Structure Learning



Structure Learning

A B D . . . T X

Sample 1 1.22 −0.12 0.27 · · · 1.09 0.99
Sample 2 −0.04 0.00 0.09 · · · 0.03 −0.47
Sample 3 0.11 0.23 2.23 · · · −0.07 1.68

· · · · · ·

Data

A

T

E

L

S

B

X D

Bayesian Network
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Markov Equivalence
Recall: A Directed Graphical Model encodes the Conditional Independence of a
distribution.
Multiple DAGs may encode the same Conditional Independence statements.

X Y Z

X Y Z

X Y Z

X

Y

Z

X ̸ |= Z and X |= Z | Y X |= Z and X ̸ |= Z | Y

Two DAGs encoding the same Conditional Independence statements are called
Markov Equivalent.
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Markov Equivalence

Theorem (Verma & Pearl, 1991)

Two DAGs G1 and G2 areMarkov Equivalent if and only if they have the same skeleton and
the same v-structures.

V

W

X

Y

Z

G1

V

W

X

Y

Z

G2

V

W

X

Y

Z

CPDAG

Markov Equivalence Classes can be represented as a Completed Partially Directed Acyclic
Graph (CPDAG).
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Faithfulness

A & B are d-separated
by C in G XA |= XB | XCGlobal Markov Prop.

Global Markov Prop.

Faithfulness

Exercise: Violation of Faithfulness

X

Z

Y
X := NX

Y := X+ NY

Z := X− Y+ NZ

with NX,NY,NZ
iid∼ N (0, σ2)

⇒
Structure
Learning X

Z

Y

p(X,Y,Z) is a Multivariate Normal distribution, where the only conditional independence
statements are: X |= Z and X ̸ |= Z | Y.
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Structure Identifiability

Theorem

If p is faithful wrt. G0, then the Markov Equivalence class of G0 is identifiable from p.

Only the Markov Equivalence class is identifiable from observations, not an individual
graph. Two Markov Equivalent graphs may lead to different causal conclusions!

X Y or X Y

Under different assumptions, an individual DAG may be identifiable
Additive Noise Model (ANM): Xj := fj(XPaj) + Nj, Nj

iid∼ N (0, σ2), where fj are nonlinear.

Using interventional data (i.e. data resulting from controlled experiments).
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Constraint-based methods

Step 1: Identify the skeleton
For each pair of nodes X & Y, and
A ⊆ V\{X,Y}, test if X |= D Y | A.

If there is no set A s.t. X |= D Y | A, then
add an edge X — Y.

Step 2: Identify the v-structures
For each structure X — Z — Y with no edge
between X & Y, orient X→ Z← Y iff Z /∈ A,
where A is such that X |= D Y | A.

A

T

E

L

S

B

X D

IC Algorithm
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Constraint-based methods

Step 2’: Additional orientations
Use Meek’s orientation rules to orient
some of the remaining edges.

X

Y Z

⇓

X

Y Z

Rule 1

X

Y Z

⇓

X

Y Z

Rule 2

X

Y1 Y2

Z

⇓

X

Y1 Y2

Z

Rule 3

X

Y1 Y2

Z

⇓

X

Y1 Y2

Z

Rule 4
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Score-based methods

Treat the problem of learning the structure of the DAG as amodel selection problem

max
G∈DAG

score(G | D)

Recall: choices of scores
Likelihood score:

scoreL(G | D) = log p(D | θ̂MLE
G ,G)

Bayesian score:
scoreB(G | D) = log p(D | G) + log p(G)

Bayesian Information Criterion (BIC):

scoreBIC(G | D) = log p(D | θ̂MLE
G ,G)− logN

2
Dim[G]
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Score-based methods

max
G∈DAG

score(G | D)

How to search over the space of DAGs?
The number of DAGs over n nodes is super-exponential in n: 2Θ(n2).

Theorem
Let G≤d = {G a DAG | every node has at most d parents}. Finding a DAG in G≤d that
maximizes a score is NP-hard for d ≥ 2.

Heuristic solutions:
Greedy algorithms: Hill climbing, GES
Genetic algorithms
Constrained continuous optimization: NOTEARS, Gran-DAG, DCDI, etc...
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Continuous relaxation

Powers of the adjacency matrix of a graph count the paths of a certain length in G.

X1 X2

X3X4


0 1 0 1
0 0 1 0
1 0 0 0
0 0 1 0



A

X1 X2

X3X4


0 0 2 0
1 0 0 0
0 1 0 1
1 0 0 0



A2

X1 X2

X3X4


2 0 0 0
0 1 0 1
0 0 2 0
0 1 0 1



A3

· · ·

1! 2! 3!
· · ·+ + +exp(A) = I+

G is a DAG

Tr
(

exp(A)
)
= d
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Constrained continuous optimization

max
G∈DAG

score(G | D)
max
A

score(A | D)

s.t. Tr
(

exp(A)
)
= d

This can be solved using constrained optimization techniques (e.g., Augmented Lagrangian)

Exercise
Show that

∂

∂A
Tr
(

exp(A)
)
= exp(A)⊤
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