Bayesian Methods



Bayesian methods

p(x|0) “Frequentist”: Bag of tools to estimate 6:
MLE, regularized MLE, max entropy, moment
Model Data matching, ERM, ...
0 X

“Subjective Bayesian”: Use probabilities
everywhere there is uncertainty

p(0 | data) o< p(data | 8)p(0)

——
Posterior Likelihood  Prior

Caricature:

Bayesian is “optimist”: they think you can get “good” models = obtain a method by doing inference in a model

Frequentist is “pessimist”: they use analysis tools




Example: biased coin

Recall from lecture 4 .
Posterior:

Hyperparameters
for the prior 9 | X1: ” HP Xi | 9 )
Qp, BO

e.g., 0 ~ Uniform([0, 1]) = Beta(1,1) =

= 9X%i(1 — 9) ~Zpigeo=L(1 — g)Fo~11y 11(6)

) p(0 | x1.n) = Beta(d | ag + n1, Bo +n — ny)
Xi |0 ~ Bernoulli(0)

p(xi | 8) = 99(1 — §)1~ conjugate prior to the
Sy ' Bernoulii likelihood model

(P 0 9| ao,Bo~ Beta(ao, fo)
O




Conjugate priors

Conjugate family
Consider a family of distributions on 6: F = {p(f | o) | « € A}

We say that F is a conjugate family to the observation model p(x | 0) if for any x ~ X | 6,
the posterior p(0 | x, ) € F.

i.e., there exists some o/ (x, ) € As.t. p(6 | x,a) = p(0 | &)

Biased coin (Lecture 4): the Beta prior is conjugate to the Bernoulli likelihood model.

Homework 1: the Dirichlet prior is conjugate to the multinomial likelihood model.




Conjugate priors

Sidenote: if you use a conjugate prior in a DGM, then Gibbs sampling can be easy

Parameters
p—
VXK
documents

O—+0O—-O0—0

e.g., this is the case in LDA topic model

« 04 Zid Wid < Words
0y € Ay i=1,..., ng
0y ~ Dir(c) T d=1,....0
Topic Topics

proportion




Model Selection



Model selection

Model selection: selecting different hyperparameters, models, etc...
Say we want to choose between 2 DGM

AS a fre Uentist “cavalier notation”
M 1 ./\/l 2 q

\ é%{;E = arg max logp(data | 01,602,603, “model = M;”)

01,02,03
9 /‘ ’\ MLE 7]
Ori.” = argmaxlogp(data | 01,02, 03, “model = M)

03 c
D OB
L Different space

than 03
p(x3 |X1,93 p(x3 | x1,xa; 03)

How to choose between models?

Note here that "M C My”




Model selection

How to choose between models?
We can’t compare

My Mo log p(data | él\&l‘E,M = M) vs. logp(data | HAI\&;E,M = My)
90 ‘90
Y
because LHS < RHS, since M; C M,
01 0 01 R i.e. you would always choose the “bigger model”

@ @_ei@ As a frequentist:

= Use cross-validation
p(x3 | x1;62) p(x3 | x1,x2;62)

Use a validation set
i.e. logp(test data | 31 (train data), M = M,)




Bayesian model selection

True Bayesian: sum over models (integrate out uncertainty about M)

Introduce a prior over models p(M)

distribution for one model

p(XI'leW | D) = Zp(XneW | D, M)p(M | D) Standard Bayesian predictive
M

_ %: [ /@ Bl |0, M)p(0 | D, M)0] p(M | D)

| —1
posterior on 6 given model averaging: sum
data D and model M over posterior over models

How to obtain the posterior p(M | D) or p(M, 0 | D)?
variational inference, (RJJMCMC, etc...




Marginal likelihood

Posterior over models: p(M | D) o p(D | M)p(M)
\h\/—_/

/ p(D | 6, M)p(0 | Myao | P(D | M) = marginal likelihood
Om

Likelihood

Closed form with parametric assumptions (e.g., using conjugate priors)

Use approximations: variational inference, sampling, etc...

Simple approximation: Bayesian information criterion




Empirical Bayes

In model selection, we are forced to pick one model
Pick the model that maximizes p(M | D) x p(D | M)p(M)

To compare models, look at

p(M =My |D) |p(D|Mi)||p(M)

Empirical Bayes

p(M =Mz |D) |p(D|Ms)||p(M2) or
Bayes factor  Prior ratio Type I

Maxi Likelihood
If “uniform prior” over models, then pick by p(D | M;) aximum Hixelinoo

among K models M1, ..., My

When the number of models is “small”, this approach is “fine”
(i.e., it won't overfit)




Empirical Bayes

Zoubin's cartoon: suppose *M; C My C M3”

4 @M
p(D | M) normalized over D
p(D | Ms)
Vs.
p(D | M)
I o R p(D | OyLe(D), M) | can overfit badly
Dobs D

But type Il ML can still overfit if we have
too many models

eg., p(D|M)=46(D|M)




Structure Learning



Structure Learning

A B D T X C?

Sample1 | 1.22 —0.12 027 --- 109  0.99 @)\
Sample2 | —0.04 0.00 0.09 --- 0.03 —0.47 e
Sample3 | 0.11 023 223 --- —007 1.68 C?\?

Data Bayesian Network




Markov Equivalence

Recall: A Directed Graphical Model encodes the Conditional Independence of a
distribution.

Multiple DAGs may encode the same Conditional Independence statements.

O—0—
O——
O——3

XJZ and X1 Z|Y X1 Z and XL Z|Y

Two DAGs encoding the same Conditional Independence statements are called
Markov Equivalent.




Markov Equivalence

Theorem (Verma & Pearl, 1991)

Two DAGs G and Gz are Markov Equivalent if and only if they have the same skeleton and
the same v-structures.

VAVVEVY:

Gi Ga CPDAG

Markov Equivalence Classes can be represented as a Completed Partially Directed Acyclic
Graph (CPDAG).




Faithfulness

A & B are d-separated

I
by Cin G m Xa AL Xs | Xc
X := Ny Structure
W VXN, tearming  (D)—(?)
Z:=X—-Y+ N> = @{

@ with Ny, Ny, Nz = N(0, o)

p(X, Y, Z) is a Multivariate Normal distribution, where the only conditional independence
statements are: X L Zand X . Z | Y.




Structure Identifiability

Theorem

If p is faithful wrt. GO, then the Markov Equivalence class of GO is identifiable from p.

Only the Markov Equivalence class is identifiable from observations, not an individual
graph. Two Markov Equivalent graphs may lead to different causal conclusions!

O—® o O—®

Under different assumptions, an individual DAG may be identifiable

Additive Noise Model (ANM): X; := f;(Xpa,) + Nj, N; ~ N(0, %), where f: are nonlinear.

Using interventional data (i.e. data resulting from controlled experiments).




Constraint-based methods

Step 1: Identify the skeleton

For each pair of nodes X & Y, and 0 e
A CV\{X, Y}, testif X lLp Y| A.

If there is no set A s.t. X L5 Y | A, then
add an edge X — Y.

For each structure X — Z — Y with no edge
between X & Y, orient X — Z < Y iff Z ¢ A, %) (D)
where A is such that X L Y| A.

Step 2: Identify the v-structures




Constraint-based methods

Step 2': Additional orientations
Use Meek’s orientation rules to orient U l} U U

some of the remaining edges.

Rule 1 Rule 2 Rule 3 Rule 4




Score-based methods

Treat the problem of learning the structure of the DAG as a model selection problem

max_score(G | D)
GeDAG

Recall: choices of scores

Likelihood score: A
score (G | D) = logp(D | O3™F, G)

Bayesian score:
scoreg(G | D) =logp(D | G) + logp(G)

Bayesian Information Criterion (BIC):

log N

scoregc(G | D) = logp(D | ég[LE, Gg)

Dim[G]




Score-based methods

max_score(G | D)
GeEDAG

How to search over the space of DAGs?

The number of DAGs over n nodes is super-exponential in n: 26(n*)

Let Geg = {G a DAG | every node has at most d parents}. Finding a DAG in G<q that
maximizes a score is NP-hard for d > 2.

Heuristic solutions:

Greedy algorithms: Hill climbing, GES
Genetic algorithms
Constrained continuous optimization: NOTEARS, Gran-DAG, DCDI, etc...




Continuous relaxation

Powers of the adjacency matrix of a graph count the paths of a certain length in G.

Dea
.—\>€@ '\' G is a DAG

o 1 0 1 0 0 2 0 2 0 0 O
0 0 1 0 1 0 0 O o 1 0 1
1 0 0 O 0 1 0 1 0 0 2 O
0 0 1 O 1 0 O 0 0o 1 0 1

Tr(exp(4)) =d




Constrained continuous optimization

Al D
max_score(G | D) e score(A | D)
GeDAG

s.t. Tr(exp(A)) = d

This can be solved using constrained optimization techniques (e.g., Augmented Lagrangian)

Show that

—Tr(exp(4)) = exp(A)T
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