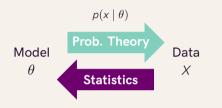
Bayesian Methods

Bayesian methods



"Frequentist": Bag of tools to estimate $\hat{\theta}$: MLE, regularized MLE, max entropy, moment matching, ERM, ...

"Subjective Bayesian": Use probabilities everywhere there is uncertainty

$p(\theta \mid$	data)	$\propto \rho(\text{data} \mid \theta) \rho(\theta)$

Posterior

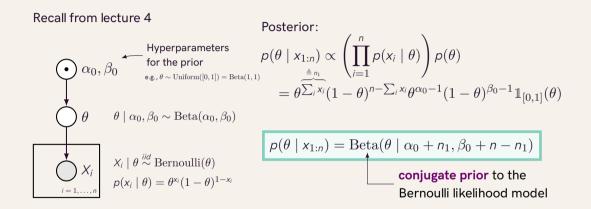
Likelihood Prior

Caricature:

 $\text{Bayesian is ``optimist'': they think you can get ``good'' models \Rightarrow obtain a method by doing inference in a model}$

Frequentist is "pessimist": they use analysis tools

Example: biased coin



Conjugate priors

Conjugate family

Consider a family of distributions on θ : $\mathcal{F} = \{ p(\theta \mid \alpha) \mid \alpha \in \mathcal{A} \}$

We say that \mathcal{F} is a **conjugate family** to the observation model $p(x \mid \theta)$ if for any $x \sim X \mid \theta$, the posterior $p(\theta \mid x, \alpha) \in \mathcal{F}$.

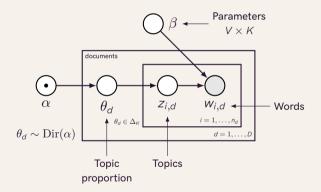
i.e., there exists some $\alpha'(x, \alpha) \in \mathcal{A}$ s.t. $p(\theta \mid x, \alpha) = p(\theta \mid \alpha')$

Examples

Biased coin (Lecture 4): the Beta prior is conjugate to the Bernoulli likelihood model. Homework 1: the Dirichlet prior is conjugate to the multinomial likelihood model.

Conjugate priors

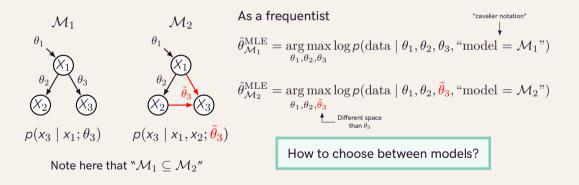
Sidenote: if you use a conjugate prior in a DGM, then Gibbs sampling can be easy e.g., this is the case in **LDA topic model**



Model Selection

Model selection

Model selection: selecting different hyperparameters, models, etc... Say we want to choose between 2 DGM



Model selection

How to choose between models?

$\mathcal{M}_{1} \qquad \mathcal{M}_{2}$ $\theta_{0} \qquad \theta_{0} \qquad \theta_{1}$ $\theta_{1} \qquad \theta_{2} \qquad \theta_{1} \qquad \theta_{2}$ $\theta_{1} \qquad \theta_{2} \qquad \theta_{1} \qquad \theta_{2} \qquad \theta_{2} \qquad \theta_{2}$ $\theta_{1} \qquad \theta_{2} \qquad \theta_{2} \qquad \theta_{2} \qquad \theta_{3}$ $p(x_{3} \mid x_{1}; \theta_{2}) \qquad p(x_{3} \mid x_{1}, x_{2}; \tilde{\theta}_{2})$

We can't compare

$$\log p(\text{data} \mid \hat{\theta}_{\mathcal{M}_1}^{\text{MLE}}, \mathcal{M} = \mathcal{M}_1) \quad \text{vs.} \quad \log p(\text{data} \mid \hat{\theta}_{\mathcal{M}_2}^{\text{MLE}}, \mathcal{M} = \mathcal{M}_2)$$

because $LHS \leq RHS$, since $\mathcal{M}_1 \subseteq \mathcal{M}_2$ i.e. you would always choose the "bigger model" As a frequentist:

Use cross-validation

Use a validation set i.e. $\log \rho(\text{test data} \mid \hat{\theta}_{\mathcal{M}_i}^{\mathrm{MLE}}(\text{train data}), \mathcal{M} = \mathcal{M}_i)$

Bayesian model selection

True Bayesian: sum over models (integrate out uncertainty about $\mathcal{M})$ Introduce a prior over models $p(\mathcal{M})$

$$p(x_{\text{new}} \mid \mathcal{D}) = \sum_{\mathcal{M}} p(x_{\text{new}} \mid \mathcal{D}, \mathcal{M}) p(\mathcal{M} \mid \mathcal{D}) \xrightarrow[\text{distribution for one model}}_{\text{distribution for one model}}$$
$$= \sum_{\mathcal{M}} \left[\int_{\Theta_{\mathcal{M}}} p(x_{\text{new}} \mid \theta, \mathcal{M}) \underbrace{p(\theta \mid \mathcal{D}, \mathcal{M})}_{\text{posterior on } \theta \text{ given}} d\theta \right]_{\text{model averaging: sum}} \underbrace{p(\mathcal{M} \mid \mathcal{D})}_{\text{over posterior over model}}$$

How to obtain the posterior $p(\mathcal{M} \mid \mathcal{D})$ or $p(\mathcal{M}, \theta \mid \mathcal{D})$? variational inference, (RJ)MCMC, etc...

Marginal likelihood

Posterior over models: $p(\mathcal{M} \mid \mathcal{D}) \propto \underbrace{p(\mathcal{D} \mid \mathcal{M})}_{\int_{\Theta_{\mathcal{M}}} \underbrace{p(\mathcal{D} \mid \theta, \mathcal{M})p(\theta \mid \mathcal{M})d\theta}} p(\mathcal{D} \mid \mathcal{M}) = \text{marginal likelihood}$

How to compute the marginal likelihood

Closed form with parametric assumptions (e.g., using conjugate priors)

Use approximations: variational inference, sampling, etc...

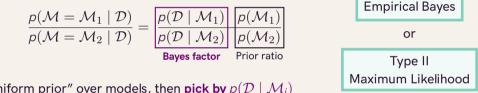
Simple approximation: Bayesian information criterion

Empirical Bayes

In model selection, we are forced to pick one model

Pick the model that maximizes $p(\mathcal{M} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})$

To compare models, look at

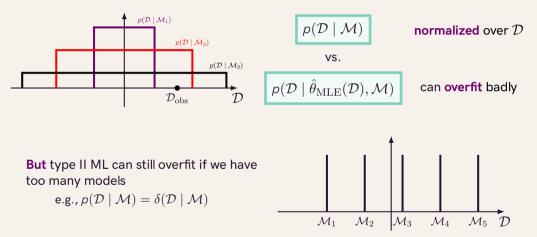


If "uniform prior" over models, then pick by $\rho(\mathcal{D} \mid \mathcal{M}_i)$ among K models $\mathcal{M}_1, \ldots, \mathcal{M}_K$

When the number of models is "small", this approach is "fine" (i.e., it won't overfit)

Empirical Bayes

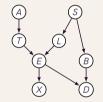
Zoubin's cartoon: suppose " $\mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \mathcal{M}_3$ "



Structure Learning

Structure Learning

	A	В	D		Т	Х	
Sample 1		-0.12	0.27		1.09	0.99	
Sample 2	-0.04	0.00	0.09		0.03	-0.47	
Sample 3	0.11	0.23	2.23		-0.07	1.68	



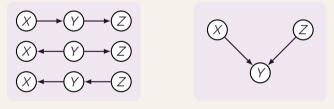
Data

Bayesian Network

Markov Equivalence

Recall: A Directed Graphical Model encodes the Conditional Independence of a distribution.

Multiple DAGs may encode the same Conditional Independence statements.



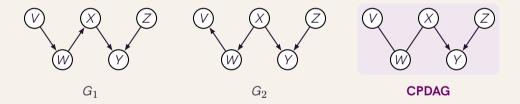
 $X \not\perp Z$ and $X \perp Z \mid Y$ $X \perp Z$ and $X \not\perp Z \mid Y$

Two DAGs encoding the same Conditional Independence statements are called **Markov Equivalent**.

Markov Equivalence

Theorem (Verma & Pearl, 1991)

Two DAGs G_1 and G_2 are **Markov Equivalent** if and only if they have the same skeleton and the same v-structures.



Markov Equivalence Classes can be represented as a **Completed Partially Directed Acyclic Graph** (CPDAG).

A & B are d-separated by C in \mathcal{G}

Exercise: Violation of Faithfulness

 $X := N_X$ $Y := X + N_Y$ $Z := X - Y + N_Z$ with $N_X, N_Y, N_Z \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$ Structure Learning ↔

p(X, Y, Z) is a Multivariate Normal distribution, where the only conditional independence statements are: $X \perp\!\!\!\perp Z$ and $X \not\!\!\perp Z \mid Y$.

Structure Identifiability

Theorem

If p is faithful wrt. \mathcal{G}^0 , then the Markov Equivalence class of \mathcal{G}^0 is **identifiable** from p.

Only the Markov Equivalence class is identifiable from observations, **not an individual graph**. Two Markov Equivalent graphs may lead to different causal conclusions!

 $(X \longrightarrow (Y) \qquad \text{or} \qquad (X \longleftarrow (Y))$

Under different assumptions, an individual DAG may be identifiable

Additive Noise Model (ANM): $X_j := f_j(X_{Pa_j}) + N_j$, $N_j \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$, where f_j are nonlinear.

Using interventional data (i.e. data resulting from controlled experiments).

Constraint-based methods

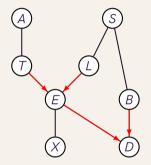
Step 1: Identify the skeleton

For each pair of nodes *X* & *Y*, and $\mathbf{A} \subseteq \mathbf{V} \setminus \{X, Y\}$, test if $X \perp\!\!\!\perp_{\mathcal{D}} Y \mid \mathbf{A}$.

If there is no set \mathbf{A} s.t. $X \perp _{\mathcal{D}} Y \mid \mathbf{A}$, then add an edge X - Y.

Step 2: Identify the v-structures

For each structure $X \longrightarrow Z \longrightarrow Y$ with no edge between $X \And Y$, orient $X \longrightarrow Z \leftarrow Y$ iff $Z \notin \mathbf{A}$, where \mathbf{A} is such that $X \perp _{\mathcal{D}} Y \mid \mathbf{A}$.

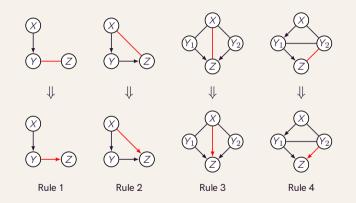


IC Algorithm

Constraint-based methods

Step 2': Additional orientations

Use **Meek's orientation rules** to orient some of the remaining edges.



Score-based methods

Treat the problem of learning the structure of the DAG as a model selection problem

$$\max_{\mathcal{G}\in \mathrm{DAG}}\mathrm{score}(\mathcal{G}\mid\mathcal{D})$$

Recall: choices of scores

Likelihood score:

$$\operatorname{score}_{L}(\mathcal{G} \mid \mathcal{D}) = \log p(\mathcal{D} \mid \hat{\theta}_{\mathcal{G}}^{\operatorname{MLE}}, \mathcal{G})$$

Bayesian score:

$$\operatorname{score}_{\mathcal{B}}(\mathcal{G} \mid \mathcal{D}) = \log p(\mathcal{D} \mid \mathcal{G}) + \log p(\mathcal{G})$$

Bayesian Information Criterion (BIC):

$$\operatorname{score}_{\mathcal{B}\mathcal{IC}}(\mathcal{G} \mid \mathcal{D}) = \log p(\mathcal{D} \mid \hat{\theta}_{\mathcal{G}}^{\operatorname{MLE}}, \mathcal{G}) - \frac{\log N}{2} \operatorname{Dim}[\mathcal{G}]$$

 $\max_{\mathcal{G}\in \mathrm{DAG}}\mathrm{score}(\mathcal{G}\mid\mathcal{D})$

How to search over the space of DAGs?

The number of DAGs over *n* nodes is **super-exponential** in *n*: $2^{\Theta(n^2)}$.

Theorem

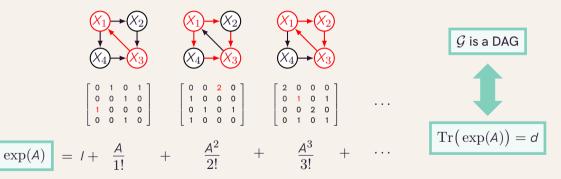
Let $G_{\leq d} = \{\mathcal{G} \ a \ DAG \mid every \ node \ has \ at \ most \ d \ parents\}$. Finding a DAG in $G_{\leq d}$ that maximizes a score is **NP-hard** for $d \geq 2$.

Heuristic solutions:

Greedy algorithms: Hill climbing, GES Genetic algorithms Constrained continuous optimization: NOTEARS, Gran-DAG, DCDI, etc...

Continuous relaxation

Powers of the adjacency matrix of a graph count the paths of a certain length in \mathcal{G} .



Constrained continuous optimization

This can be solved using constrained optimization techniques (e.g., Augmented Lagrangian)

Exercise
Show that
$$\frac{\partial}{\partial A} \operatorname{Tr} \big(\exp(A) \big) = \exp(A)^{\top}$$

