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Overview

Causal inference:
Causal graphical models

Interventions (the "do" operator)

Example: Study of Kidney Stone Treatments

Backdoor criterion

The ladder of causation

Counterfactuals

Identifiability in latent variable models:
The problem of identifiability in generative models

Disentanglement

Independent component analysis (ICA)

Darmois-Skitovich theorem

Leveraging temporal dependencies (AMUSE algorithm)

Nonlinear ICA and its connection to disentanglement
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Causal Inference
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Causal graphical models (CGM)

A causal graphical model (CGM) is a pair (p,G)
s.t.

G is a directed acyclic graph (DAG)

p ∈ L(G), i.e. p factorizes according to G.

G describes causal relationships between
variables, i.e., how the system reacts to
interventions.

Example: Kidney stone treatment

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

p(S, T, R) = p(S)p(T | S)p(R | S, T)
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The "do" operator models the effect of interventions

Recall p(x) = ∏i p(xi | x
πGi

)

Throughout, we will assume perfect deterministic interventions.

Definition (The “do” operator)

Given a causal graphical model (p,G),

p(x | do(xk := x′k)) := δ(xk, x′k)∏
i ̸=k

p(xi | x
πGi

) ,

where δ(xk, x′k) = 1 when xk = x′k and 0 otherwise. Here, xk is targeted by the
intervention.

Thus, p(x | do(xk := x′k)) is a "new" joint distribution over XV .

Can compute marginals, e.g. p(xi|do(xk := x′k)) = ∑xV\{i}
p(x|do(xk := x′k))

... and conditionals, e.g. p(xi|xj, do(xk := x′k)) =
p(xi ,xj |do(xk :=x′k))

p(xj |do(xk :=x′k))

Truncated factorization:
p(xV\{k} | do(xk := x′k)) = ∑xk

δ(xk, x′k)∏i ̸=k p(xi | x
πGi

) = ∏i ̸=k p(xi | x
πGi

).
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Conditioning is not the same as doing

Conditioning is not the same as doing

Consider the simple CGM X→ Y

p(X|do(Y := Y′)) = p(Y | X)p(X) (1)

= p(X) (2)

̸= p(X | Y = Y′) (3)
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The "do" operator

Back to our example

RT

S

P(S, R | do(T = T′)) = P(S)P(T|S)︸ ︷︷ ︸
The decision of taking treatment T

does not depend on S anymore

P(R|S, T′)

Notice p(· | do(x′k)) ∈ L(G ′), where G ′ is the mutilated graph, i.e.

G ′ = (V, E′) E′ = {(i, j) ∈ E | j ̸= k}
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Different types of interventions

Intervening on the treatment T

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

Observations

p(S)p(T | S)p(R | S, T)

Perfect intervention

p(S)p̃(T)p(R | S, T)

Imperfect intervention

p(S)p̃(T | S)p(R | S, T)

Definition presented previously is a perfect intervention with p̃(T) := δ(T, T′).
It is sometimes called a perfect deterministic intervention.
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Why should I care!?! (Kidney Stone Treatment)

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

p(S)p(T | S)p(R | S, T)

(Example taken from Element of Causal Inference by Peters et al. p111)

Known as Simpson’s Paradox
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Why should I care!?! (Kidney Stone Treatment)

Pay attention to these two questions...

1- What is your chance of recovery knowing that the doctor gave you treatment A?

2- What is your chance of recovery if you decide to take treatment A?

(In both cases, assume you don’t know the size of your stone)
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Why should I care!?! (Kidney Stone Treatment)

T = Treatment ∈ {A, B}
Z = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

What is your chance of recovery knowing that the doctor gave you treatment A?

Compute P(R = 1 | T = A) ! (we know how to do that :D)

Knowing that your doctor gave you treatment A tells you that you probably have a
large kidney stone ... P(S = large|T = A) = 0.75

... which reduces your chance of recovery
P(R = 1|T = A, S = large) = 0.73 < 0.93 = P(R = 1|T = A, S = small)

What is your chance of recovery if you decide to take treatment A?

P(R = 1 | do(T = A))

Your really don’t know anything about your kidney stone
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Why should I care!?! (Kidney Stone Treatment)

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

RT

S

P(S, R | do(T)) = P(S)P(T|S)︸ ︷︷ ︸
The decision of taking treatment T

does not depend on S anymore

P(R|S, T)

Then simply marginalize as usual:

P(R = 1|do(T = A)) = ∑
S

P(R = 1, S|do(T = A))

= ∑
S

P(R = 1|S, T = A)P(S) = 0, 832
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Why should I care!?! (Kidney Stone Treatment)

T = Treatment ∈ {A, B}
S = Stone size ∈ {small, large}
R = Patient recovered ∈ {0, 1}

What is your chance of recovery knowing that the doctor gave you treatment A?

P(R = 1|T = A) = 0, 78 P(R = 1|T = B) = 0,83

What is your chance of recovery if you decide to take treatment A?

P(R = 1|do(T = A)) = 0,832 P(R = 1|do(T = B)) = 0, 782
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Why should I care!?! (Kidney Stone Treatment)

Again, conditioning is not the same as doing!

P(R = 1|do(T = A)) = ∑
S

P(R = 1|S, T = A)P(S)

P(R = 1|T = A) = ∑
S

P(R = 1|S, T = A)P(S | T = A)
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Why should I care!?! (Kidney Stone Treatment)

What just happened? We showed

P(R = 1|do(T = A))︸ ︷︷ ︸
Never observed data from p(T, S, R | do(T = A))

= ∑
S

P(R = 1|S, T = A)P(S)︸ ︷︷ ︸
...Yet I can estimate the query, since there is no "do" here :D

Formally, this means p(R = 1 | do(T = A)) is identifiable from p(R, T, S) and G
(our computations critically relied on the causal graph).

Turns out what we just did is an instance of the backdoor criterion...
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Backdoor criterion

Theorem (Backdoor criterion)

p(xi | do(xk)) = ∑xS
p(xi | xk, xS)p(xS) if

1 S contains no descendants of xk, and

2 S blocks all paths from xi to xk entering xk from "the backdoor", i.e. such that
xk ← ... xi

Say we want to compute p(y|do(x)):

Left path: Only backdoor path. Blocked by S = {K}. Right path: Why we cannot include a descendant of X in S.
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Backdoor criterion

Can all identifiable queries p(xi | do(xk)) be expressed with the backdoor criterion?

Answer: No!

Since U is unobserved, we cannot apply the backdoor criterion...

Turns out we can nevertheless identify p(y|do(x)) from p(X, Z, Y) using the
front-door criterion. Look it up!
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Do-calculus

Do-calculus is a set of three rules that can be applied to transform an
interventional query (including a "do") into an observational expression (without
any "do").

Not enough time to present them...

All identifiable queries can be found by a subsequent application of these rules,
i.e. the rules are complete.
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The ladder of causation

You now know about the first two steps of Pearl’s "ladder of causation".

Taken from “The Seven Tools of Causal Inference with Reflections on Machine Learning” by Judea Pearl
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Counterfactual

You need structural causal models (SCM). Let G be a DAG:

X1 := f1(XπG1
, N1) (4)

X2 := f2(XπG2
, N2) (5)

. . . (6)

Xd := fd(XπGd
, Nd) (7)

This induces an observational distribution

Can define interventions as well

Can define counterfactual statements (not possible with a causal graphical
model). See Section 6.4 in ECI.
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Identifiability in latent variable models
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Disentanglement

(Latent factors)

(Observation)

(Nonlinear decoder)

High-dim. 
observation

(Tree position)

(Robot position)

(Ball position)

 

(       )

Disentanglement is about recovering
natural factors of variations from p(X).

But can’t we just learn a latent variable
model using EM or a variational
autoencoder (VAE)?

Typically not as simple... One has to
keep in mind the problem of
identifiability.

S. Lachapelle Mila IFT6269 December 2nd, 2022 23 / 43



Causal inference Identifiability in latent variable models

Disentanglement

(Latent factors)

(Observation)

(Nonlinear decoder)

High-dim. 
observation

(Tree position)

(Robot position)

(Ball position)

 

(       )

Disentanglement is about recovering
natural factors of variations from p(X).

But can’t we just learn a latent variable
model using EM or a variational
autoencoder (VAE)?

Typically not as simple... One has to
keep in mind the problem of
identifiability.

S. Lachapelle Mila IFT6269 December 2nd, 2022 23 / 43



Causal inference Identifiability in latent variable models

Disentanglement

(Latent factors)

(Observation)

(Nonlinear decoder)

High-dim. 
observation

(Tree position)

(Robot position)

(Ball position)

 

(       )

Disentanglement is about recovering
natural factors of variations from p(X).

But can’t we just learn a latent variable
model using EM or a variational
autoencoder (VAE)?

Typically not as simple... One has to
keep in mind the problem of
identifiability.

S. Lachapelle Mila IFT6269 December 2nd, 2022 23 / 43



Causal inference Identifiability in latent variable models

S. Lachapelle Mila IFT6269 December 2nd, 2022 24 / 43



Causal inference Identifiability in latent variable models

This poses a problem for interpretability!
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Illustrating unidentifiability: Factor analysis

Representation in factor analysis is unidentifiable

Factor analysis model:

z ∼ N (0, Ik) x = Wz + µ + ϵ W ∈ Rd×k ϵ ∼ N (0, D) ϵ |= z

We can specify a model with a different representation z, but expressing the same
marginal over x:

ẑ := Uz (U orthogonal) =⇒ ẑ ∼ N (0, Ik)

Ŵ := WU⊤ =⇒ x̂ = Ŵẑ + µ + ϵ (8)

= WU⊤Uz + µ + ϵ (9)

= Wz + µ + ϵ = x (10)

Both models have different representations E[z | x] (one is a linear transformation of
the other):

E[ẑ | x̂] = Ŵ⊤(ŴŴ⊤ + D)−1(x̂− µ) [From class on FA] (11)

= UW⊤(WW⊤ + D)−1(x− µ) (12)

= UE[z | x] (13)
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Causal inference Identifiability in latent variable models

Blind source separation

Unidentifiability is a problem if we want to recover the "ground-truth latent factors"!

Source: https://onionesquereality.wordpress.com/2010/01/30/blind-source-separation-in-magnetic-resonance-images/
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Causal inference Identifiability in latent variable models

Independent component analysis (ICA)

Is there any hope of recovering the original latents?

Yes! If the latent variables are mutually independent and Non-Gaussian.

Theorem (Identifiability of linear ICA (Comon, 1992))

Suppose x = Wz where W ∈ Rd×d is invertible and where z is a random d-dimensional
vector (non-constant) with mutually independent components with at most one
Gaussian component. Let A ∈ Rd×d be an invertible matrix such that y := Ax has
mutually independent components. Then y = PDz where P is permutation matrix and
D is an invertible diagonal matrix.

P. Comon. Independent component analysis. Higher-Order Statistics, 1992.

Note that we can recover the latent factors only up to permutation and scaling.

Theorem suggests the following: Find a linear transformation of your data A such
that the transformed data y := Ax have mutually independent components.

Many methods exist to acheive this: Maximizing non-gaussianity, MLE, minimizing
mutual information ...etc.
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Causal inference Identifiability in latent variable models

Darmois-Skitovich theorem

Can prove identifiability of linear ICA via the Darmois-Skitovich theorem:

Theorem (Darmois (1953); Skitivic (1953))

Let xj, j = 1, . . . , n with n ≥ 2 be mutually independent random variables and let αj, βj
be constants. Let

y1 :=
n

∑
j=1

αjxj y2 :=
n

∑
j=1

βjxj (14)

be two independent random variables. Then, whenever αjβj ̸= 0, the variable xj is
either constant or Gaussian.

For a recent treatment of these ideas, see Pavan & Miranda (2018).

G. Darmois. Analyse générale des liaisons stochastiques: etude particulière de l’analyse factorielle lineaire. Revue de l’Institut International
de Statistique, 1953.

V. P. Skitivic. On a property of the normal distribution. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1953.

F. R. M. Pavan and M. D. Miranda. On the darmois-skitovich theorem and spatial independence in blind source separation. Journal of

Communication and Information Systems, 2018.
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Causal inference Identifiability in latent variable models

Independent component analysis (ICA)

Theorem (Identifiability of linear ICA (Comon, 1992))

Suppose x = Wz where W ∈ Rd×d is invertible and where z is a random d-dimensional
vector (non-constant) with mutually independent components with at most one
Gaussian component. Let A ∈ Rd×d be an invertible matrix such that y := Ax has
mutually independent components. Then y = PDz where P is permutation matrix and
D is an invertible diagonal matrix.

P. Comon. Independent component analysis. Higher-Order Statistics, 1992.

ICA amounts to finding a linear transformation A such that y := Ax has mutually
independent component.

As a first step, start by making the features decorrelated (whitening).
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Causal inference Identifiability in latent variable models

Whitening a.k.a. "half ICA"

Let’s find a matrix V such that cov(Vx) = I.

Eigen decomposition of covariance: cov(x) = UΛU⊤, with orthogonal U
(Symmetric =⇒ exists an orthogonal basis of eigenvectors)
(Positive definite =⇒ eigenvalues are positive)

By taking V := Λ−
1
2 U⊤, we get

cov(Vx) = Vcov(x)V⊤ (15)

= Λ−1/2U⊤UΛU⊤UΛ−1/2 (16)

= Λ−1/2ΛΛ−1/2 = I (17)

We denote the whitened data by x̄ := Vx.

Exercise: Show that, for any orthogonal matrix A, cov(Ax̄) = I.

Recall that independence implies zero covariance, but that the converse is false!

So to perform ICA, we need to go one step further and find the orthogonal matrix
A that makes the latents independent.
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Causal inference Identifiability in latent variable models

Objectives to perform ICA

Most algorithms to perform ICA first whiten the data (x̄ = Vx) and then search for an
orthogonal matrix A that optimizes one of these objectives.

MLE: Choose a model class for the distribution of the latents pz(z) = ∏d
j=1 pj(zj)

(common choice is Laplacian, to induce sparsity) and maximize log-likelihood:

n

∑
i=1

log p(x̄(i); A) =
1
n

n

∑
i=1

log pz(Ax̄(i)) + log |det A|︸ ︷︷ ︸
=0

Maximizing non-gaussianity via kurtosis (Related to fourth-moment E[y4
j ]).

Gaussian distribution has kurtosis = 0.

Minimizing mutual information between the components of y := Ax̄.

See Hyvarinen et al. (2001) for more details!

A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley, 2001.
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Causal inference Identifiability in latent variable models

ICA via temporal dependencies (AMUSE algorithm, Tong et al., (1990))

Instead of leveraging higher-order statistics, can we leverage temporal
correlations?

Assume the sequence of latents {zt}t forms a "wide-sense stationary process" i.e.

Expectation E[zt] does not depend on t (and equals 0)

Covariance matrix cov(zt) does not depend on t

Lagged covariance matrices cov(zt, zt−τ) do not dependent on t (but can depend on τ)

We assume the components are decorrelated. Formally cov(zt) = I and
cov(zt, zt−τ) = Dτ , where Dτ is diagonal.

xt = Wzt

Note that cov(xt) = Wcov(zt)W⊤ = WW⊤

S. Lachapelle Mila IFT6269 December 2nd, 2022 38 / 43



Causal inference Identifiability in latent variable models

ICA via temporal dependencies (AMUSE algorithm, Tong et al., (1990))

Instead of leveraging higher-order statistics, can we leverage temporal
correlations?

Assume the sequence of latents {zt}t forms a "wide-sense stationary process" i.e.

Expectation E[zt] does not depend on t (and equals 0)

Covariance matrix cov(zt) does not depend on t

Lagged covariance matrices cov(zt, zt−τ) do not dependent on t (but can depend on τ)

We assume the components are decorrelated. Formally cov(zt) = I and
cov(zt, zt−τ) = Dτ , where Dτ is diagonal.

xt = Wzt

Note that cov(xt) = Wcov(zt)W⊤ = WW⊤

S. Lachapelle Mila IFT6269 December 2nd, 2022 38 / 43



Causal inference Identifiability in latent variable models

ICA via temporal dependencies (AMUSE algorithm, Tong et al., (1990))

Instead of leveraging higher-order statistics, can we leverage temporal
correlations?

Assume the sequence of latents {zt}t forms a "wide-sense stationary process" i.e.

Expectation E[zt] does not depend on t (and equals 0)

Covariance matrix cov(zt) does not depend on t

Lagged covariance matrices cov(zt, zt−τ) do not dependent on t (but can depend on τ)

We assume the components are decorrelated. Formally cov(zt) = I and
cov(zt, zt−τ) = Dτ , where Dτ is diagonal.

xt = Wzt

Note that cov(xt) = Wcov(zt)W⊤ = WW⊤

S. Lachapelle Mila IFT6269 December 2nd, 2022 38 / 43



Causal inference Identifiability in latent variable models

ICA via temporal dependencies (AMUSE algorithm, Tong et al., (1990))

Instead of leveraging higher-order statistics, can we leverage temporal
correlations?

Assume the sequence of latents {zt}t forms a "wide-sense stationary process" i.e.

Expectation E[zt] does not depend on t (and equals 0)

Covariance matrix cov(zt) does not depend on t

Lagged covariance matrices cov(zt, zt−τ) do not dependent on t (but can depend on τ)

We assume the components are decorrelated. Formally cov(zt) = I and
cov(zt, zt−τ) = Dτ , where Dτ is diagonal.

xt = Wzt

Note that cov(xt) = Wcov(zt)W⊤ = WW⊤

S. Lachapelle Mila IFT6269 December 2nd, 2022 38 / 43



Causal inference Identifiability in latent variable models

ICA via temporal dependencies (AMUSE algorithm, Tong et al., (1990))

Instead of leveraging higher-order statistics, can we leverage temporal
correlations?

Assume the sequence of latents {zt}t forms a "wide-sense stationary process" i.e.

Expectation E[zt] does not depend on t (and equals 0)

Covariance matrix cov(zt) does not depend on t

Lagged covariance matrices cov(zt, zt−τ) do not dependent on t (but can depend on τ)

We assume the components are decorrelated. Formally cov(zt) = I and
cov(zt, zt−τ) = Dτ , where Dτ is diagonal.

xt = Wzt

Note that cov(xt) = Wcov(zt)W⊤ = WW⊤

S. Lachapelle Mila IFT6269 December 2nd, 2022 38 / 43



Causal inference Identifiability in latent variable models

ICA via temporal dependencies (AMUSE algorithm, Tong et al., (1990))

cov(zt) = I cov(zt, zt−τ) = Dτ (diagonal) xt = Wzt cov(xt) = WW⊤

Start by whitening the data:

cov(xt) = WW⊤ = UΛU⊤

x̄t := Λ−1/2U⊤xt = Λ−1/2U⊤W︸ ︷︷ ︸
W̄:=

zt

We would like to recover W̄ up to permutation of its columns, since with it, we can
infer the latents associated to an observation x by doing W̄x̄.

Turns out W̄ is orthogonal:

W̄W̄⊤ = Λ−1/2U⊤WW⊤UΛ−1/2 = Λ−1/2U⊤UΛU⊤UΛ−1/2 = I
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Causal inference Identifiability in latent variable models

ICA via temporal dependencies (AMUSE algorithm, Tong et al., (1990))

cov(zt) = I cov(zt, zt−τ) = Dτ (diagonal) xt = Wzt cov(xt) = WW⊤

x̄t := Λ−1/2U⊤xt (Whitened xt) x̄t = W̄zt W̄W̄⊤ = I

Consider the lagged covariance between x̄t and x̄t−τ , which can be estimated
empirically!

cov(x̄t, x̄t−τ) = E[x̄tx̄⊤t−τ ] (18)

= E[W̄ztz⊤t−τW̄⊤] (19)

= W̄cov(zt, zt−τ)W̄⊤ (20)

= W̄DτW̄⊤ (21)

How cool! The matrix W̄ appears in an eigendecomposition of cov(x̄t, x̄t−τ)!

But is this decomposition unique up to permutation and rescaling? If the entries of
Dτ are all distinct, then yes! (Because each eigenspace is one-dimensional)

This means we can estimate W̄ by diagonalizing cov(x̄t, x̄t−τ)
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x̄t := Λ−1/2U⊤xt (Whitened xt) x̄t = W̄zt W̄W̄⊤ = I

Consider the lagged covariance between x̄t and x̄t−τ , which can be estimated
empirically!

cov(x̄t, x̄t−τ) = E[x̄tx̄⊤t−τ ] (18)

= E[W̄ztz⊤t−τW̄⊤] (19)

= W̄cov(zt, zt−τ)W̄⊤ (20)

= W̄DτW̄⊤ (21)

How cool! The matrix W̄ appears in an eigendecomposition of cov(x̄t, x̄t−τ)!

But is this decomposition unique up to permutation and rescaling? If the entries of
Dτ are all distinct, then yes! (Because each eigenspace is one-dimensional)

This means we can estimate W̄ by diagonalizing cov(x̄t, x̄t−τ)
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ICA via temporal dependencies (AMUSE algorithm, Tong et al., (1990))

Practical consideration:
In practice, the empirical cov(x̄t, x̄t−τ) is not symmetric, and thus we can’t find an
orthogonal basis of eigenvectors.

AMUSE algorithm uses a trick to symmetrize it (Tong et al., 1990).

Can leverage multiple time lags via simultaneous diagonalization.

L. Tong, V.C. Soon, Y.F. Huang, and R. Liu. Amuse: a new blind identification algorithm. In IEEE International Symposium on Circuits and

Systems, 1990.
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Back to initial motivation...

(Latent factors)

(Observation)

(Nonlinear decoder)

High-dim. 
observation

(Tree position)

(Robot position)

(Ball position)

 

(       )

For more involved application, the
"linear decoder" assumption does not
hold...

Can we prove identifiability for
nonlinear decoder?

It turns out independence and
non-gaussianity of the latents are
insufficient in that case (Hyvarinen &
Pajunen, 1999)

We need stronger assumptions...

A. Hyvarinen and P. Pajunen. Nonlinear independent component analysis: Existence and uniqueness results. Neural Networks, 1999.
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Identifiability results for Nonlinear ICA (far from exhaustive list)

Leveraging contrastive learning and (diagonal) temporal dependencies
A. Hyvarinen and H. Morioka. Nonlinear ICA of Temporally Dependent Stationary Sources. In Proceedings of the 20th

International Conference on Artificial Intelligence and Statistics, 2017.

Leveraging VAE’s and non-stationarity of the sources
I. Khemakhem, D. Kingma, R. Monti, and A. Hyvarinen. Variational autoencoders and nonlinear ICA: A unifying framework. In

Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, 2020.

Leveraging sparse temporal dependencies (not necessarily diagonal) and
interventions on the latents
S. Lachapelle, P. Rodriguez Lopez, Y. Sharma, K. E. Everett, R. Le Priol, A. Lacoste, and S. Lacoste-Julien. Disentanglement via

mechanism sparsity regularization: A new principle for nonlinear ICA. In First Conference on Causal Learning and Reasoning,

2022.
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