
JMLR: Workshop and Conference Proceedings 7 (2011) 1–15 Workshop on Unsupervised and Transfer Learning

Unsupervised and Transfer Learning Challenge:
a Deep Learning Approach

Grégoire Mesnil1,2 mesnilgr@iro.umontreal.ca

Yann Dauphin1 dauphiya@iro.umontreal.ca

Xavier Glorot1 glorotxa@iro.umontreal.ca

Salah Rifai1 rifaisal@iro.umontreal.ca

Yoshua Bengio1 bengioy@iro.umontreal.ca

Ian Goodfellow1 goodfeli@iro.umontreal.ca

Erick Lavoie1 lavoeric@iro.umontreal.ca

Xavier Muller1 mullerx@iro.umontreal.ca

Guillaume Desjardins1 desjagui@iro.umontreal.ca

David Warde-Farley1 wardefar@iro.umontreal.ca

Pascal Vincent1 vincentp@iro.umontreal.ca

Aaron Courville1 courvila@iro.umontreal.ca

James Bergstra1 bergstrj@iro.umontreal.ca
1 Dept. IRO, Université de Montréal. Montréal (QC), H2C 3J7, Canada
2 LITIS EA 4108, Université de Rouen. 76 800 Saint Etienne du Rouvray, France

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Learning good representations from a large set of unlabeled data is a particularly chal-
lenging task. Recent work (see Bengio (2009) for a review) shows that training deep
architectures is a good way to extract such representations, by extracting and disentan-
gling gradually higher-level factors of variation characterizing the input distribution. In
this paper, we describe different kinds of layers we trained for learning representations in
the setting of the Unsupervised and Transfer Learning Challenge. The strategy of our
team won the final phase of the challenge. It combined and stacked different one-layer
unsupervised learning algorithms, adapted to each of the five datasets of the competition.
This paper describes that strategy and the particular one-layer learning algorithms feeding
a simple linear classifier with a tiny number of labeled training samples (1 to 64 per class).
Keywords: Deep Learning, Unsupervised Learning, Transfer Learning, Neural Networks,
Restricted Boltzmann Machines, Auto-Encoders, Denoising Auto-Encoders.

1. Introduction

The objective of machine learning algorithms is to discover statistical structure in data.
In particular, representation-learning algorithms attempt to transform the raw data into
a form from which it is easier to perform supervised learning tasks, such as classification.
This is particularly important when the classifier receiving this representation as input is

c© 2011 G. Mesnil1,2 et al.

Mesnil1,2 et al.

linear and when the number of available labeled examples is small. This is the case here
with the Unsupervised and Transfer Learning (UTL) Challenge 1.

Another challenging characteristic of this competition is that the training (development)
distribution is typically very different from the test (evaluation) distribution, because it
involves a set of classes different from the test classes, i.e., both inputs and labels have a
different nature. What makes the task feasible is that these different classes have things
in common. The bet we make is that more abstract features of the data are more likely to
be shared among the different classes, even with classes which are very rare in the training
set. Another bet we make with representation-learning algorithms and with Deep Learning
algorithms in particular is that the structure of the input distribution P (X) is strongly
connected with the structure of the class predictor P (Y |X) for all of the classes Y . It
means that representations h(X) of inputs X are useful both to characterize P (X) and to
characterize P (Y |X), which we will think of as parametrized through P (Y |h(X)). Another
interesting feature of this competition is that the input features are anonymous, so that
teams are compared based on the strength of their learning algorithms and not based on
their ability to engineer hand-crafted features based on task-specific prior knowledge. More
material on Deep Learning can be found in a companion paper Bengio (2011).

The paper is organized as follows. The pipeline going from bottom (raw data) to top
(final representation fed to the classifier) is described in Section 2. In addition to the score
returned by the competition servers, Section 3 presents other criteria that guided the choice
of hyperparameters. Section 4 precisely describes the layers we chose to combine for each of
the five competition datasets, at the end of the exploration phase that lasted from January
2011 to mid-April 2011.

2. Method

We obtain a deep representation by stacking different single-layer blocks, each taken from
a small set of possible learning algorithms, but each with its own set of hyper-parameters
(the most important of which is often just the dimension of the representation). Whereas
the number of possible combinations of layer types and hyper-parameters is exponential as
depth increases, we used a greedy layer-wise approach (Bengio et al., 2007) for building each
deep model. Hence, the first layer is trained on the raw input and its hyper-parameters
are chosen with respect to the score returned by the competition servers (on the validation
set) and different criteria to avoid overfitting to a particular subset of classes (discussed in
Section 3). We then fix the ith layer (or keep only a very small number of choices) and search
for a good choice of the i+ 1th layer, pruning and keeping only a few good choices. Depth
is thus increased without an explosion in computation until the model does not improve
significantly the performance according to our criteria.

The resulting learnt pipeline can be divided in three types of stages: preprocessing, feature
extraction and transductive postprocessing.

1. http://http://www.causality.inf.ethz.ch/unsupervised-learning.php

2

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

2.1. Preprocessing

Before the feature extraction step, we preprocessed the data using various techniques. Let
D = {x(j)}j=1,...,n be a training set where x(j) ∈ Rd.

Standardization One option is to standardize the data. For each feature, we compute
its mean µk = (1/n)

∑n
j=1 x

(j)
k and variance σk. Then, each transformed feature x̃(j)

k =

(x(j)
k − µk)/σk has zero mean and unit variance.

Uniformization (t-IDF) Another way to control the range of the input is to uniformize
the feature values by restricting their possible values to [0, 1] (and non-parametrically and
approximately mapping each feature to a uniform distribution). We rank all the x(j)

k and
map them to [0, 1] by dividing the rank by the number of observations sorted. In the case
of sparse data, we assigned the same range value (0) for zeros features. One option is to
aggregate all the features in these statistics and another is to do it separately for each
feature.

Contrast Normalization On datasets which are supposed to correspond to images,
each input d-vector is normalized with respect to the values in the given input vector
(global contrast normalization). For each sample vector x(j) subtract its mean µ(j) =
(1/d)

∑d
k=1 x

(j)
k and divide by its standard deviation σ(j) (also across the elements of the

vector). In the case of images, this would discard the average illumination and contrast
(scale).

Whitened PCA The Karhulen-Loève transform constantly improved the quality of the
representation for each dataset. Assume the training set D is stored as a matrix X ∈
MR(n, d). First, we compute the empirical mean µ = (1/n)

∑n
i=1Xi. where Xi. denotes

row i of the matrix X, i.e., example i. We center the data X̃ = X − µ and compute
the covariance matrix C = (1/n)X̃T X̃. Then, we obtain the eigen-decomposition of the
covariance matrix C = V −1UV i.e U ∈ Rd contains the eigen-values and V ∈MR(d, d) the
corresponding eigen-vectors (each row corresponds to an eigen-vector). We build a diagonal
matrix U

′
where U

′
ii =

√
Cii. By the end, the output of the whitened PCA is given by

Y = (X − µ)V U
′
. In our experiments, we used the PCA implementation of the scikits 2

toolbox.

Feature selection In the datasets where the input is sparse, a preprocessing that we
found very useful is the following: only the features active on the training (development)
and test (resp. validation) datasets are retained for the test set (resp. validation) repre-
sentations. We removed those whose frequency was low on both datasets (this introduces
a new hyper-parameter that is the cut-off threshold, but we only tried a couple of values).

2. http://scikits.appspot.com/

3

Mesnil1,2 et al.

2.2. Feature extraction

Feature extraction is the core of our pipeline and has been crucial for getting the first ranks
during the challenge. Here we briefly introduce each method that has been used during the
competition. See also Bengio (2011) along with the citations below for more details.

2.2.1. µ-ss-RBM

The µ-spike and slab Restricted Boltzmann Machine (µ-ssRBM) (Courville et al., 2011) is
a recently introduced undirected graphical model that has demonstrated some promise as
a model of natural images. The model is characterized by having both a real-valued slab
vector and a binary spike variable associated with each hidden unit. The model possesses
some practical properties such as being amenable to block Gibbs sampling as well as being
capable of generating similar latent representations of the data to the mean and covariance
Restricted Boltzmann Machine (Ranzato and Hinton, 2010).

The µ-ssRBM describes the interaction between three random vectors: the visible vector
v representing the observed data, the binary “spike” variables h and the real-valued “slab”
variables s. Suppose there are N hidden units and a visible vector of dimension D: v ∈ RD.
The ith hidden unit (1 ≤ i ≤ N) is associated with a binary spike variable: hi ∈ {0, 1} and
a real valued vector si ∈ RK , pooling over K linear filters. This kind of pooling structure
allows the model to learn over which filters the model will pool – a useful property in the
context of the UTL challenge where we cannot assume a standard “pixel structure” in the
input. The µ-ssRBM model is defined via the energy function

E(v, s, h) = −
N∑

i=1

vTWisihi +
1
2
vT

(
Λ +

N∑
i=1

Φihi

)
v

+
N∑

i=1

1
2
sT

i αisi −
N∑

i=1

µT
i αisihi −

N∑
i=1

bihi +
N∑

i=1

µT
i αiµihi,

in which Wi refers to the ith weight matrix of size D×K, the bi are the biases associated
with each of the spike variables hi, and αi and Λ are diagonal matrices that penalize large
values of ‖si‖22 and ‖v‖22 respectively.

Efficient learning and inference in the µ-ssRBM is rooted in the ability to iteratively
sample from the factorial conditionals P (h | v), p(s | v, h) and p(v | s, h) with a Gibbs
sampling procedure. For a detailed derivation of these conditionals, we refer the reader to
(Courville et al., 2011). In training the µ-ssRBM, we use stochastic maximum likelihood
(Tieleman, 2008) to update the model parameters.

2.2.2. Denoising Autoencoder

Traditional autoencoders map an input x ∈ Rdx to a hidden representation h (the learnt
features) with an affine mapping followed by a non-linearity s (typically a sigmoid): h =
f(x) = s(Wx + b). The representation is then mapped back to input space, initially
producing a linear reconstruction r(x) = W ′f(x) + br, where W ′ can be the transpose
of W (tied weights) or a different matrix (untied weights). The autoencoder’s parameters
θ = W, b, br are optimized so that the reconstruction is close to the original input x in the

4

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

sense of a given loss function L(r(x), x) (the reconstruction error). Common loss functions
include squared error ‖r(x)− x‖2, squared error after sigmoid ‖s(r(x))− x‖2, and sigmoid
cross-entropy −

∑
i xi log s(ri(x)) + (1 − xi) log(1 − s(ri(x))). To encourage robustness of

the representation, and avoid trivial useless solutions, a simple and efficient variant was
proposed in the form of the Denoising Autoencoders (Vincent et al., 2008, 2010). Instead of
being trained to merely reconstruct its inputs, a Denoising Autoencoder is trained to denoise
artificially corrupted training samples, a much more difficult task, which was shown to force
it to extract more useful and meaningful features and capture the structure of the input
distribution (Vincent et al., 2010). In practice, instead of presenting the encoder with a
clean training sample x, it is given as input a stochastically corrupted version x̃. The
objective remains to minimize reconstruction error L(r(x̃), x) with respect to clean sample
x, so that the hidden representation has to help denoise. Common choices for the corruption
include additive Gaussian noise, and masking a fraction of the input components at random
by setting them to 0 (masking noise).

2.2.3. Contractive Autoencoder

To encourage robustness of the representation f(x) obtained for a training input x, Rifai
et al. (2011) propose to penalize its sensitivity to that input, measured as the Frobenius
norm of the Jacobian Jf (x) of the non-linear mapping. Formally, if input x ∈ Rdx is mapped
by an encoding function f to a hidden representation h ∈ Rdh , this sensitivity penalization
term is the sum of squares of all partial derivatives of the extracted features with respect
to input dimensions:

‖Jf (x)‖2F =
∑
ij

(
∂hj(x)
∂xi

)2

.

Penalizing ‖Jf‖2F encourages the mapping to the feature space to be contractive in the
neighborhood of the training data. The flatness induced by having small first derivatives
will imply an invariance or robustness of the representation for small variations of the input.

While such a Jacobian term alone would encourage mapping to a useless constant repre-
sentation, it is counterbalanced in auto-encoder training by the need for the learnt repre-
sentation to allow a good reconstruction of the training examples.

2.2.4. Rectifiers

Recent works investigated linear rectified activation function variants. Nair and Hinton
(2010) used Noisy Rectified Linear Units (NReLU) (i.e. max(0, x+N(0, σ(x))) for Restricted
Boltzmann Machines. Compared to binary units, they observed significant improvements
in term of generalization performance for image classification tasks. Following this line of
work, Glorot et al. (2011) used the rectifier activation function (i.e. max(0, x)) for deep
neural networks and Stacked Denoising Auto-Encoders (SDAE) (Vincent et al., 2008, 2010)
and obtained similarly good results.

This non-linearity has various mathematical advantages. First, it naturally creates sparse
representations with true zeros which are computationally appealing. In addition, the
linearity on the active side of the activation function allows gradient to flow well on the
active set of neurons, possibly reducing the vanishing gradients problem.

5

Mesnil1,2 et al.

In a semi-supervised setting similar to that of the Unsupervised and Transfer learning
Challenge setup, Glorot et al. (2011) obtained state-of-the-art results for a sentiment anal-
ysis task (the Amazon 4-task benchmark) for which the bag-of-words input were highly
sparse.

But learning such embeddings for huge sparse vectors with the proposed approach is still
very expensive. Even though the training cost only scales linearly with the dimension of
the input, it can become too expensive when the input becomes very large. Projecting the
input vector to its embedding can be made quite efficient by using a sparse matrix-vector
product. However, projecting the embedding back to the input space is quite expensive
during decoding because one has to compute a reconstruction (and reconstruction error)
for all inputs and not just the non-zeros. If the input dimension is 50,000 and the embedding
dimension 1,000 then decoding requires 50,000,000 operations. In order to speed-up training
for huge sparse input distributions, we use reconstruction sampling (Dauphin et al., 2011).
The idea is to reconstruct all the non-zero elements of the input and a small random subset
of the zero elements, and to use importance sampling weights to exactly correct the bias
thus introduced.

The learning objective is sampled in the following manner:

L̂(x, z) =
d∑
k

p̂k
qk
H(xk, zk)

where p̂ ∈ {0, 1}dx with p̂ ∼ P (p̂|x). The sampling pattern p̂ is resampled for each
presentation of the input and it controls which input unit will participate in the training
cost for this presentation. The bias introduced by sampling can be corrected by setting the
reweighting term 1/q such that qk = E[p̂k|k,x, x̃].

The optimal sampling probabilities P (p̂|x) are those that minimize the variance of the
estimator L̂. Dauphin et al. (2011) show that reconstructing all non-zeros and a small
subset of zeros is a good heuristic. The intuition is that the model is more likely to be
wrong on the non-zeros than the zeros. Let C(x, x̃) = {k : xk = 1 or x̃k = 1}. Then bit k is
reconstructed with probability

P (p̂k = 1|xk) =
{

1 if k ∈ C(x, x̃)
|C(x, x̃)|/dx otherwise

(1)

Dauphin et al. (2011) show that the computational speed-up is on the order of dSMP /dx

where dSMP is the average number of units that are reconstructed and dx is the input
dimension. Furthermore, reconstruction sampling yields models that converge as fast as
the non-sampled networks in terms of gradient steps (but where each step is much faster).

2.3. Postprocessing

The competition servers use a Hebbian classifier. Specifically, the discriminant function
applied to a test set matrix Z (one row per example) after training the representation on a
training set matrix X (one row per example) is given by

f(Z) = ZXT y

6

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

where yi = 1/np if training example i is positive, or −1/nn if training example i is negative,
where np and nn are the number of positive and negative training examples, respectively.
One classifier per class (one against all) is trained.

This classifier does not have any regularization hyperparameters. We were interested in
discovering whether some postprocessing of our features could result in Hebbian learning
behaving as if it was regularized. It turns out that in a sense, Hebbian learning is already
maximally regularized. Fisher discriminant analysis can be solved as a linear regression
problem (Bishop, 2006), and the L2 regularized version of this problem yields this discrim-
inant function:

gλ(Z) = Z(XTX + λI)XT y

where λ is the regularization coefficient. Note that

lim
λ→∞

gλ(Z)
||gλ(Z)||

=
f(Z)
||f(Z)||

.

Since scaling does not affect the final classification decision, Hebbian learning may be seen
as maximally regularized Fisher discriminant analysis. It is possible to reduce Hebbian
learning’s implicit L2 regularization coefficient to some smaller λ by multiplying Z by
(XTX + λI)−1/2), but it is not possible to increase it.

Despite this implicit regularization, overfitting is still an important obstacle to good
performance in this competition due to the small number of training examples used. We
therefore explored other means of avoiding overfitting, such as reducing the number of
features and exploring sparse codes that would result in most of the features appearing in
the training set being 0. However, the best results and regularization where obtained by a
transductive PCA.

2.3.1. Transductive PCA

A Transductive PCA is a PCA transform trained not on the training set but on the test
(or validation) set. After training the first k layers of the pipeline on the training set, we
trained a PCA on top of layer k, either on the validation set or on the test set (depending on
whether we were submitting to the validation set or the test set). Regarding the notation
used in 2.1, we apply the same transformation with X replaced by the representation on
top of layer k of the validation set or the test set i.e h(Xvalid).

This transductive PCA thus only retains variations that are the dominant ones in the test
or validation set. It makes sure that the final classifier will ignore the variations present
in the training set but irrelevant for the test (or validation) set. In a sense, this is a
generalization of the strategy introduced in 2.1 of removing features that were not present
in the both training and test / validation sets. The lower layers only keep the directions of
variation that are dominant in the training set, while the top transductive PCA only keeps
those that are significantly present in the validation (or test) set.

We assumed that the validation and test sets contained the same number of classes to
validate the number of components on the validation set performance. In general, one
needs at least k − 1 components in order to separate k classes by a set of one-against-all
classifiers. Transductive PCA has been decisive for winning the competition as it improved
considerably the performance on all the datasets. In some cases, we also used a mixed
strategy for the intermediate layers, mixing examples from all three sets.

7

Mesnil1,2 et al.

2.3.2. Other methods

After the feature extraction process, we were able to visualize the data as a three-dimensional
scatter plot of the representation learnt. On some datasets, a very clear clustering pattern
became visually apparent, though it appeared that several clouds came together in an am-
biguous region of the latent space discovered.

In order to attempt to disambiguate this ambiguous region without making hard-threshold
decisions, we fit a Gaussian mixture model with the EM algorithm and a small number
of Gaussian components chosen by visual inspection of these clouds. We then used the
posterior probabilities of the cluster assignments as an alternate encoding.

K-means, by contrast with Gaussian mixture models, makes a hard decision as to cluster
assignments. Many researchers were recently impressed when they found out that a certain
kind of feature representation (the “triangle code”) based on K-means, combined with
specialized pre-processing, yielded state of the art performance on the CIFAR-10 image
classification benchmark (Coates et al., 2011). Therefore, we tried K-means with a large
number of means and the triangle code as a post-processing step.

In the end, though, none of our selected final entries included a Gaussian mixture model
or K-means, as the transductive PCA always worked better as a post-processing layer.

3. Criterion

The usual kind of overfitting is due to specializing to particular labeled examples. In this
transfer learning context, another kind of overfitting arose: overfitting a representation
to particular classes. Since the validation set and test set have non-intersecting sets of
classes, finding representations that work well on the validation set was not a guarantee for
good behavior on the test set, as we learned from our experience with the competition first
phase. Note also that the competition was focused on a particular criterion, the Area under
the Learning Curve (ALC)3 which gives much weight to the cases with very few labeled
examples (1, 2, or 4, per class, in particular, get almost half of the weight). So the question
we investigated in the second and final phase (where some training set labels were revealed)
was the following: does the ALC of a representation computed on a particular subset of
classes correlate with the ALC of the same representation computed on a different set of
classes?

Overfitting on a specific subset of classes can be observed by training a PCA separately on
the training, validation and test sets on ULE (this data set corresponds to MNIST digits).
The number of components maximizing the ALC will be different, depending on the choice
of the subset of classes. Figure 1(a) illustrates the effect of the number of components
retained on the training, validation and test ALCs. While the best number of components
on the validation set would be 2, choosing this number of components for the test set
significantly degrades the test ALC.

During the first phase, we noticed the absence of correlation between the validation
ALC and test ALC computed on the ULE dataset. During the second phase, we tried to
reproduce the competition setting using the labels available for transfer with the hope of
finding a criteria that would guarantee generalization. The ALC was computed on every

3. http://www.causality.inf.ethz.ch/ul data/DatasetsUTLChallenge.pdf

8

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

subset of at least two classes found in the transfer labels and metrics were derived. Those
metrics are illustrated in Figure 1(b). We observed that the standard deviation seems to
be inversely proportional to the generalization accuracy, therefore substracting it from the
mean ALC ensures that the choice of hyper-parameters is done in a range where the training,
validation and test ALCs are correlated. In the case of a PCA, optimizing the µ−σ criteria
correctly returns the best number of PCA components, ten, where the training, validation
and test ALCs are all correlated.

It appears that this criterion is a simple way to use the small amount of labels given to the
competitors for the phase 2. However, this criterion has not been heavily tested during the
competition since we always selected our best models with respect to the validation ALC
returned by the competition servers. From the phase 1 to the phase 2, we only explored
the space of the hyperparameters of our models using a finer grid.

(a) ALC on the three sets (b) Criterion

Figure 1: ULE Dataset Left: ALC on training, validation and test sets of PCA repre-
sentations, with respect to the number of principal components retained. Right:
Comparison between training, validation and test ALC and the criterion com-
puted from the ALC, obtained on every subset of at least 2 classes present in the
transfer labels for different numbers of components of a PCA.

4. Results

For each of the five datasets, AVICENNA, HARRY, TERRY, SYLVESTER and
RITA, the strategy retained for the final winning submission on the phase 2 is precisely
described. Training such a deep stack of layers from preprocessing to postprocessing takes
at most 12 hours for each dataset once you have found the good hyperparameters. All our
models are implemented in Theano (Bergstra et al., 2010), a Python library that allows
transparent use of GPUs. During the competition, we used a cluster of GPUs, Nvidia
GeForce GTX 580.

9

Mesnil1,2 et al.

AVICENNA SYLVESTER RITA HARRY TERRY0.0

0.2

0.4

0.6

0.8

1.0

AL
C

VALID ALC by dataset and by step

Raw
Preproc
Feat. Extr.
Postproc

AVICENNA SYLVESTER RITA HARRY TERRY0.0

0.2

0.4

0.6

0.8

1.0

AL
C

TEST ALC by dataset and by step

Figure 2: For each data set, we report the Validation and Test ALC after each layer
(from raw data to postprocessing). It allows us to see where overfitting arose
(SYLVESTER) and which of the layers resulted the more important to improve
the overall performance.

4.1. AVICENNA

Nature of the data It corresponds to arabic manuscripts and consists of 150, 205 training
samples of dimension 120.

Best Architecture For preprocessing, we fitted a whitened-PCA on the raw data and
kept the first 75 components in order to eliminate the noise from the input distribution.
Then, the second layer consisted in a Denoising Autoencoder of 600 hidden units trained
with a binomial noise, i.e, each component of the input had a probability p = 0.3 of
being masked (set to 0). The top layer was a transductive PCA with only the 7 principal
components.

Results This strategy ranked first with a validation and final ALC score of 0.1932 and
0.2273 respectively. Training a contractive auto-encoder gives similar results on the valida-
tion set i.e a validation and final ALC score of 0.1930 and 0.1973 respectively.

4.2. HARRY

Nature of the data It corresponds to human actions and consists of 69, 652 training
samples of dimension 5, 000, which are sparse: only 2% of the components are typically
non-zero.

10

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

Figure 3: HARRY evaluation set after the transductive PCA, the data is nicely clustered,
suggesting that the learned preprocessing has discovered the underlying class
structure.

Best Architecture For the first layer, we uniformized the non-zero feature values (ag-
gregating all features) across the concatenation of the training, validation and test sets.
For the second layer, we trained on the union of the 3 sets a Denoising Auto-Encoder with
rectifier units and reconstruction sampling. We used the binomial masking noise (p = 0.5)
as corruption process, the logistic sigmoid as reconstruction activation function and the
cross entropy as reconstruction error criterion. The size of the hidden layer was 5000 and
we added an L1 penalty on the activation values to encourage sparsity of the representation.
For the third layer, we applied a transductive PCA and kept 3 components.

Results We obtained the best validation ALC score of the competition. This was also
the case for the final evaluation score with an ALC score of 0.861933, whereas the second
best obtained 0.754497. Figure 3 shows the final data representation we obtained for the
test (evaluation) set.

4.3. TERRY

Nature of the data This is a natural language processing (NLP) task, with 217, 034
training samples of dimension 41, 236, and a high level of sparsity: only 1% of the compo-
nents are non-zero in average.

11

Mesnil1,2 et al.

Best Architecture A setup similar to HARRY has been used for TERRY. For the first
layer, we kept only the features that were active on both training and validation sets (and
similarly with the test set, for preparing the test set representations). Then, we divided the
non-zero feature values by their standard deviation across the concatenation of the training,
validation and test set. For the second layer, we trained on the three sets a Denoising Auto-
Encoder with rectifier units and reconstruction sampling. We used binomial masking noise
(p = 0.5) as corruption process, the logistic sigmoid as reconstruction activation function
and the squared error as reconstruction error criterion. The size of the hidden layer was
5000 and we added an L1 penalty on the activation values to encourage sparsity of the
representation. For the third layer, we applied a transductive PCA and kept the leading 4
components.

Results We ranked second on this dataset with a validation and final score of 0.816752
and 0.816009.

4.4. SYLVESTER

Nature of the data It corresponds to ecology data and consists of 572, 820 training
samples of dimension 100.

Best Architecture For the first layer, we extracted the meaningful features and dis-
carded the apparent noise dimensions using PCA. We used the first 8 principal dimensions
as the feature representation produced by the layer because it gave the best performance
on the validation set. We also whitened this new feature representation by dividing each
dimension by its corresponding singular value (square root of the eigenvalue of the covari-
ance matrix, or corresponding standard deviation of the component). Whitening gives each
dimension equal importance both for the classifier and subsequent feature extractors. For
the second and third layers, we used a Contractive Auto-Encoder (CAE). We have selected
a layer size of 6 based on validation ALC. For the fourth layer, we again apply a transductive
PCA.

Figure 4 shows the evolution of the ALC curve for each layer of the hierarchy. Note that
at each layer, we only use the top-level features as the representation.

Results This yielded an ALC of 0.85109 for the validation set and 0.476341 for the test set.
The difference in ALC may be explained by the fact that Sylvester is the only dataset where
the test set contains more classes than the validation set and, and thus our assumpptions
of equal number of classes might have hurt test performance here.

4.5. RITA

Nature of the data It corresponds to the CIFAR RGB image dataset and consists of
111, 808 training samples of dimension 7, 200.

Best Architecture The µ-ssRBM was initially developed as a model for natural images.
As such, it was a natural fit for the RITA dataset. Their ability to learn the pooling

12

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

(a) Raw Data (b) 1st Layer (c) 2nd Layer

(d) 3rd Layer (e) t-PCA

Figure 4: Validation performance increases with the depth of our feature hierarchy for the
SYLVESTER dataset. ALC: Raw Data (0.2167), 1st Layer (0.6238), 2nd Layer
(0.7878), 3rd Layer (0.8511), t-PCA(0.9316)

structure was also a clear advantage, since the max-pooling strategy typically used in vision
tasks with convolutional networks LeCun et al. (1998) could no longer be employed due to
the obfuscated nature of the dataset.

For pre-processing, each image has been contrast-normalized. Then, we reduced the
dimensionality of the training dataset by learning on the first 1, 000 principal components.
For feature extraction, we chose the number of hidden units to be large enough (1000)
while still being computationally efficient on GPUs. The learning rate of 10−3 and number
of training updates (110, 000 updates with minibatches of size 16) are chosen such that
hidden units have sparse activations through pools of size 9, hovering around 10-25%. The
post-processing was consistent with the other datasets: we used the transductive PCA
method using only the first 4 principal components.

Results This yielded an ALC score of 0.286 and 0.437 for the validation and final test
sets respectively. We also tried to stack 3 layers of contractive auto-encoders directly on
the raw data and it achieved a valid ALC of 0.3268. As it appeared actually transductive,
we prefered to keep the µ-ssRBM in our competition entries because it was trained on the
whole training set.

5. Conclusion

The competition setting with different class labels in the validation and the test sets was
quite unusual. The similarity between two classes must be sufficient for transfer learning to

13

Mesnil1,2 et al.

be possible. More formal assessments of class similarity might be useful in such settings. It is
not obvious that the similarity between the subsets of classes chosen for the different datasets
in the context of the competition is sufficient for an effective generalization, neither that the
similarity between the subsets of classes found in the transfer labels is representative of the
similarity between the classes found in the training, validation and test datasets. Finally,
for assessing transfer across classes properly would require a larger number of classes. In
a future competition, we suggest that both similarity and representativeness (including
number of classes) should be ensured in a more formal or empirical way.

On all five tasks, we have found the idea of stacking different layer-wise representation-
learning algorithms to work very well. One surprise was the effectiveness of PCA both as
a first layer and a last layer, in a transductive setting. As core feature-learning blocks, the
contractive auto-encoder, the denoising auto-encoder and spike-and-slab RBM worked best
for us on the dense datasets, while the sparse rectifier denoising auto-encoder worked best
on the sparse datasets.

Acknowledgements

The authors acknowledge the support of the following agencies for research funding and
computing support: NSERC, RQCHP, CIFAR. This is also funded in part by the French
ANR Project ASAP ANR-09-EMER-001.

References

Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine
Learning, 2(1):1–127, 2009. Also published as a book. Now Publishers, 2009.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In
Workshop on Unsupervised and Transfer Learning (ICML’11), June 2011.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In Bernhard Schölkopf, John Platt, and Thomas Hoffman,
editors, Advances in Neural Information Processing Systems 19 (NIPS’06), pages 153–
160. MIT Press, 2007.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano:
a CPU and GPU math expression compiler. In Proceedings of the Python for Scien-
tific Computing Conference (SciPy), June 2010. URL http://www.iro.umontreal.ca/

~lisa/pointeurs/theano_scipy2010.pdf. Oral.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

A. Coates, H. Lee, and A. Ng. An analysis of single-layer networks in unsupervised fea-
ture learning. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics (AISTATS 2011), 2011.

14

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

Aaron Courville, James Bergstra, and Yoshua Bengio. Unsupervised models of images by
spike-and-slab RBMs. In Proceedings of the Twenty-eight International Conference on
Machine Learning (ICML’11), June 2011.

Yann Dauphin, Xavier Glorot, and Yoshua Bengio. Sampled reconstruction for large-scale
learning of embeddings. In Proceedings of the Twenty-eight International Conference on
Machine Learning (ICML’11), June 2011.

Xavier Glorot, Antoire Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In JMLR W&CP: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS 2011), April 2011.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to
document recognition. IEEE, 86(11):2278–2324, November 1998.

V. Nair and G. E Hinton. Rectified linear units improve restricted Boltzmann machines. In
Proc. 27th International Conference on Machine Learning, 2010.

M. Ranzato and G. H. Hinton. Modeling pixel means and covariances using factorized
third-order Boltzmann machines. In Proceedings of the Computer Vision and Pattern
Recognition Conference (CVPR’10), pages 2551–2558. IEEE Press, 2010.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contrac-
tive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the
Twenty-eight International Conference on Machine Learning (ICML’11), June 2011.

Tijmen Tieleman. Training restricted Boltzmann machines using approximations to the
likelihood gradient. In William W. Cohen, Andrew McCallum, and Sam T. Roweis,
editors, Proceedings of the Twenty-fifth International Conference on Machine Learning
(ICML’08), pages 1064–1071. ACM, 2008.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extract-
ing and composing robust features with denoising autoencoders. In William W. Cohen,
Andrew McCallum, and Sam T. Roweis, editors, Proceedings of the Twenty-fifth Inter-
national Conference on Machine Learning (ICML’08), pages 1096–1103. ACM, 2008.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research, 11(3371–3408),
December 2010.

15

