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Abstract

Estimating insurance premia from data is a difficult regression
problem for several reasons: the large number of variables, many of
which are discrete, and the very peculiar shape of the noise distri-
bution, asymmetric with fat tails, with a large majority zeros and a
few unreliable and very large values. We compare several machine
learning methods for estimating insurance premia, and test them
on a large data base of car insurance policies. We find that func-
tion approximation methods that do not optimize a squared loss,
like Support Vector Machines regression, do not work well in this
context. Compared methods include decision trees and generalized
linear models. The best results are obtained with a mixture of
experts, which better identifies the least and most risky contracts,
and allows to reduce the median premium by charging more to the
most risky customers.

1 Introduction

The main mathematical problem faced by actuaries is that of estimating how much
each insurance contract is expected to cost. This conditional expected claim amount
is called the pure premium and it is the basis of the gross premium charged to the
insured. This expected value is conditionned on information available about the
insured and about the contract, which we call input profile here. This regression
problem is difficult for several reasons: large number of examples, large number
variables (most of which are discrete and multi-valued), non-stationarity of the
distribution, and a conditional distribution of the dependent variable which is very
different from those usually encountered in typical applications of machine learning
and function approximation. This distribution has a mass at zero: the vast majority
of the insurance contracts do not yield any claim. This distribution is also strongly
asymmetric and it has fat tails (on one side only, corresponding to the large claims).

In this paper we study and compare several learning algorithms along with methods
traditionally used by actuaries for setting insurance premia. The study is performed
on a large database of automobile insurance policies. The methods that were tried



are the following: the constant (unconditional) predictor as a benchmark, linear
regression, generalized linear models (McCullagh and Nelder, 1989), decision tree
models (CHAID (Kass, 1980)), support vector machine regression (Vapnik, 1998),
multi-layer neural networks, mixtures of neural network experts, and the current
premium structure of the insurance company.

In a variety of practical applications, we often find data distributions with an asym-
metric heavy tail extending out towards more positive values. Modeling data with
such an asymmetric heavy-tail distribution is essentially difficult because out-
liers, which are sampled from the tail of the distribution, have a strong influence
on parameter estimation. When the distribution is symmetric (around the mean),
the problems caused by outliers can be reduced using robust estimation techniques
(Huber, 1982; F.R.Hampel et al., 1986; Rousseeuw and Leroy, 1987) which basically
intend to ignore or downweight outliers. Note that these techniques do not work
for an asymmetric distribution: most outliers are on the same side of the mean,
so downweighting them introduces a strong bias on its estimation: the conditional
expectation would be systematically underestimated.

There is another statistical difficulty, due to the large number of variables (mostly
discrete) and the fact that many interactions exist between them. Thus the tra-
ditional actuarial methods based on tabulating average claim amounts for combi-
nations of values are quickly hurt by the curse of dimensionality, unless they
make hurtful independence assumptions (Bailey and Simon, 1960). Finally, there
is a computational difficulty: we had access to a large database of ≈ 8 × 106 ex-
amples, and the training effort and numerical stability of some algorithms can be
burdensome for such a large number of training examples.

This paper is organized as follows: we start by describing the mathematical criteria
underlying insurance premia estimation (section 2), followed by a brief review of the
learning algorithms that we consider in this study, including our best-performing
mixture of positive-output neural networks (section 3). We then highlight our most
important experimental results (section 4), and in view of them conclude with an ex-
amination of the prospects for applying statistical learning algorithms to insurance
modeling (section 5).

2 Mathematical Objectives

The first goal of insurance premia modeling is to estimate the expected claim amount
for a given insurance contract for a future one-year period (here we consider that the
amount is 0 when no claim is filed). Let X ∈ Rm denote the customer and contract
input profile, a vector representing all the information known about the customer
and the proposed insurance policy before the beginning of the contract. Let A ∈ R+

denote the amount that the customer claims during the contract period; we shall
assume that A is non-negative. Our objective is to estimate this claim amount,
which is the pure premium ppure of a given contract x:1

ppure(x) = E[A|X = x]. (1)

The Precision Criterion. In practice, of course, we have no direct access to the
quantity (1), which we must estimate. One possible criterion is to seek the most
precise estimator, which minimizes the mean-squared error (MSE) over a data set
D = {〈x`, a`〉}L`=1. Let P = {p(·; θ)} be a function class parametrized by the

1The pure premium is distinguished from the premium actually charged to the cus-
tomer, which must account for the risk remaining with the insurer, the administrative
overhead, desired profit, and other business costs.



parameter vector θ. The MSE criterion produces the most precise function (on
average) within the class, as measured with respect to D:

θ∗ = arg min
θ

1
L

L∑
i=1

(p(xi; θ)− ai)2. (2)

Is it an appropriate criterion and why? First one should note that if p1 and p2 are
two estimators of E[A|X], then the MSE criterion is a good indication of how close
they are to E[A|X], since by the law of iterated expectations,

E[(p1(X)−A)2]− E[(p2(X)−A)2] = E[(p1(X)− E[A|X])2]
−E[(p2(X)− E[A|X])2],

and of course the expected MSE is minimized when p(X) = E[A|X].

The Fairness Criterion. However, in insurance policy pricing, the precision cri-
terion is not the sole part of the picture; just as important is that the estimated
premia do not systematically discriminate against specific segments of the popula-
tion. We call this objective the fairness criterion. We define the bias of the premia
b(P ) to be the difference between the average premium and the average incurred
amount, in a given population P :

b(P ) =
1
|P |

∑
〈xi,ai〉∈P

p(xi)− ai, (3)

where |P | denotes the cardinality of the set P , and p(·) is some premia estimation
function. A possible fairness criterion would be based on minimizing the norm of
the bias over every subpopulation Q of P . From a practical standpoint, such a
minimization would be extremely difficult to carry out. Furthermore, the bias over
small subpopulations is hard to estimate with statistical significance. We settle
instead for an approximation that gives good empirical results. After training a
model to minimize the MSE criterion (2), we define a finite number of disjoint
subsets (subpopulations) of the test set P , Pk ⊂ P, Pk ∩ Pj 6=k = ∅, and verify that
the absolute bias is not significantly different from zero. The subsets Pk can be
chosen at convenience; in our experiments, we considered 10 subsets of equal size
delimited by the deciles of the test set premium distribution. In this way, we verify
that, for example, for the group of contracts with a premium between the 5th and
the 6th decile, the average premium matches the average claim amount.

3 Models Evaluated

An important requirement for any model of insurance premia is that it should pro-
duce positive premia: the company does not want to charge negative money to its
customers! To obtain positive outputs neural networks we have considered
using an exponential activation function at the output layer but this created nu-
merical difficulties (when the argument of the exponential is large, the gradient is
huge). Instead, we have successfully used the “softplus” activation function (Dugas
et al., 2001):

softplus(s) = log(1 + es)
where s is the weighted sum of an output neuron, and softplus(s) is the correspond-
ing predicted premium. Note that this function is convex, monotone increasing, and
can be considered as a smooth version of the “positive part” function max(0, x).

The best model that we obtained is a mixture of experts in which the experts
are positive outputs neural networks. The gater network (Jacobs et al., 1991)
has softmax outputs to obtain positive weights summing to one.
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Figure 1: A view of the conditional distribution of the claim amounts in the out-of-
sample test set. Top: probability density of (claim amount – conditional expectation) for
5 quintiles of the conditional expectation, excluding zero-claim records. The mode moves
left for increasing conditional expectation quintiles. Bottom: proportion of non-zero claim
records per quintile of the prediction.

The mixture model was compared to other models. The constant model only
has intercepts as free parameters. The linear model corresponds to a ridge linear
regression (with weight decay chosen with the validation set). Generalized linear
models (GLM) estimate the conditional expectation from f(x) = eb+w

′x with
parameters b and w. Again weight decay is used and tuned on the validation set.
There are many variants of GLMs and they are popular for building insurance
models, since they provide positive outputs, interpretable parameters, and can be
associated to parametric models of the noise.

Decision trees are also used by practitioners in the insurance industry, in particular
the CHAID-type models (Kass, 1980; Biggs, Ville and Suen, 1991), which use
statistical criteria for deciding how to split nodes and when to stop growing the tree.
We have compared our models with a CHAID implementation based on (Biggs, Ville
and Suen, 1991), adapted for regression purposes using a MANOVA analysis. The
threshold parameters were selected based on validation set MSE.

Regression Support Vector Machines (SVM) (Vapnik, 1998) were also evaluated



56.0743

56.1108

56.5416

56.5744

67.0851

67.1192

Mean−Squared Error

Training

Validation

Test

Mixture NN Linear
SoftPlus NN GLM

CondMean
CHAID

Constant
Models

Figure 2: MSE results for eight models. Models have been sorted in ascending order
of test results. The training, validation and test curves have been shifted closer together
for visualization purposes (the significant differences in MSE between the 3 sets are due
to “outliers”). The out-of-sample test performance of the Mixture model is significantly
better than any of the other. Validation based model selection is confirmed on test results.
CondMean is a constructive greedy version of GLM.

but yielded disastrous results for two reasons: (1) SVM regression optimizes an L1-
like criterion that finds a solution close to the conditional median, whereas the
MSE criterion is minimized for the conditional mean, and because the distribution
is highly asymmetric the conditional median is far from the conditional mean; (2)
because the output variable is difficult to predict, the required number of support
vectors is huge, also yielding poor generalization. Since the median is actually 0
for our data, we tried to train the SVM using only the cases with positive claim
amounts, and compared the performance to that obtained with the GLM and the
neural network. The SVM is still way off the mark because of the above two reasons.
Figure 1 (top) illustrates the fat tails and asymetry of the conditional distribution
of the claim amounts.

Finally, we compared the best statistical model with a proprietary table-based and
rule-based premium estimation method that was provided to us as the benchmark
against which to judge improvements.

4 Experimental Results

Data from five kinds of losses were included in the study (i.e. a sub-premium was
estimated for each type of loss), but we report mostly aggregated results showing
the error on the total estimated premium. The input variables contain information
about the policy (e.g., the date to deal with inflation, deductibles and options), the
car, and the driver (e.g., about past claims, past infractions, etc...). Most variables
are subject to discretization and binning. Whenever possible, the bins are chosen
such that they contain approximately the same number of observations. For most
models except CHAID, the discrete variables are one-hot encoded. The number of
input random variables is 39, all discrete except one, but using one-hot encoding this
results in an input vector x of length m = 266. An overall data set containing about



Table 1: Statistical comparison of the prediction accuracy difference between several
individual learning models and the best Mixture model. The p-value is given under the
null hypothesis of no difference between Model #1 and the best Mixture model. Note that
all differences are statistically significant.

Model #1 Model #2 Mean MSE Diff. Std. Error Z p-value

Constant Mixture 3.40709e-02 3.32724e-03 10.2400 0

CHAID Mixture 2.35891e-02 2.57762e-03 9.1515 0

GLM Mixture 7.54013e-03 1.15020e-03 6.5555 2.77e-11

Softplus NN Mixture 6.71066e-03 1.09351e-03 6.1368 4.21e-10

Linear Mixture 5.82350e-03 1.32211e-03 4.4047 5.30e-06

NN Mixture 5.23885e-03 1.41112e-03 3.7125 1.02e-04

Table 2: MSE difference between benchmark and Mixture models across the 5 claim
categories (kinds of losses) and the total claim amount. In all cases except category 1, the
Mixture model is statistically significantly (p < 0.05) more precise than the benchmark
model.

Claim Category MSE Difference 95% Confidence Interval

(Kind of Loss) Benchmark minus Mixture Lower Higher

Category 1 20669.53 ( −4682.83 – 46021.89 )

Category 2 1305.57 ( 1032.76 – 1578.37 )

Category 3 244.34 ( 6.12 – 482.55 )

Category 4 1057.51 ( 623.42 – 1491.60 )

Category 5 1324.31 ( 1077.95 – 1570.67 )

Total claim amount 60187.60 ( 7743.96 – 112631.24 )

8 million examples is randomly permuted and split into a training set, validation
set and test set, respectively of size 50%, 25% and 25% of the total. The validation
set is used to select among models (including the choice of capacity), and the test
set is used for final statistical comparisons. Sample-wise paired statistical tests are
used to reduce the effect of huge per-sample variability.

Figure 1 is an attempt at capturing the shape of the conditional distribution of claim
amounts given input profiles, by considering the distributions of claim amounts in
different quantiles of the prediction (pure premium), on the test set. The top figure
excludes the point mass of zero claims and rather shows the difference between the
claim amount and the estimated conditional expectation (obtained with the mixture
model). The bottom histogram shows that the fraction of claims increases nicely
for the higher predicted pure premia.

Table 1 and Figure 2 summarize the comparison between the test MSE of the dif-
ferent tested models. NN is a neural network with linear output activation whereas
Softplus NN has the softplus output activations. The Mixture is the mixture of soft-
plus neural networks. This result identifies the mixture model with softplus neural
networks as the best-performing of the tested statistical models. Our conjecture is
that the mixture model works better because it is more robust to the effect of “out-
liers” (large claims). Classical robust regression methods (Rousseeuw and Leroy,
1987) work by discarding or downweighting outliers: they cannot be applied here
because the claims distribution is highly asymmetric (the extreme values are always
large ones, the claims being all non-negative). Note that the capacity of each model
has been tuned on the validation set. Hence, e.g. CHAID could have easily yielded
lower training error, but at the price of worse generalization.
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Figure 3: The premia difference distribution is negatively skewed, but has a positive
median for a mean of zero. This implies that the benchmark model (current pricing)
undercharges risky customers, while overcharging typical customers.

Table 2 shows a comparison of this model against the rule-based benchmark. The
improvements are shown across the five types of losses. In all cases the mixture
improves, and the improvement is significant in four out of the five as well as across
the sum of the five.

A qualitative analysis of the resulting predicted premia shows that the mixture
model has smoother and more spread-out premia than the benchmark. The anal-
ysis (figure 3) also reveals that the difference between the mixture premia and the
benchmark premia is negatively skewed, with a positive median, i.e., the typical cus-
tomer will pay less under the new mixture model, but the “bad” (risky) customers
will pay much more.

To evaluate fairness, as discussed in the previous section, the distribution of pre-
mia computed by the best model is analyzed, splitting the contracts in 10 groups
according to their premium level. Figure 4 shows that the premia charged are fair
for each sub-population.

5 Conclusion

This paper illustrates a successful data-mining application in the insurance industry.
It shows that a specialized model (the mixture model), that was designed taking
into consideration the specific problem posed by the data (outliers, asymmetric dis-
tribution, positive outputs), performs significantly better than existing and popular
learning algorithms. It also shows that such models can significantly improve over
the current practice, allowing to compute premia that are lower for less risky con-
tracts and higher for more risky contracts, thereby reducing the cost of the median
contract.

Future work should investigate in more detail the role of temporal non-stationarity,
how to optimize fairness (rather than just test for it afterwards), and how to further
increase the robustness of the model with respect to large claim amounts.
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