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Département d’Informatique et Recherche Opérationnelle
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Abstract

The aim of this report is to correct an inconsistency in the mathematical formulas
that appeared in our previously published Manifold Parzen article [1], regarding the
computation of the density of “oriented” high dimensional Gaussian “pancakes”
for which we store only the first d leading eigenvectors and eigenvalues (rather
than a full n × n covariance matrix, or its inverse). We give a detailed derivation
leading to the correct formulas.

1 Detailed mathematical derivation of LocalGaussian
evaluation

We consider, in IRn, the multivariate Gaussian density Nµ,C parameterized by mean
vector µ ∈ IRn and n × n covariance matrix C. The density at any point x ∈ IRn is
given by

Nµ,C(x) =
1√

(2π)n|C|
e−

1
2 (x−µ)′C−1(x−µ) (1)

where |C| is the determinant of C.

Let x̃ = x− µ

Let C = V DV ′ the eigen-decomposition of C where the columns of V are the or-
thonormal eigenvectors and D is a diagonal matrix with the eigenvalues sorted in de-
creasing order (λ1, . . . , λn).
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We replace D with D̃ which is a diagonal matrix containing modified eigenvalues λ̃1..n

such that all eigenvalues after λ̃d are given the same value σ2, i.e.

λ̃1..n = (λ̃1, . . . , λ̃d, σ
2, . . . , σ2)

Using C̃ = V D̃V ′ instead of C in equation 1, we get:

Ñµ,C(x) =
1√

(2π)n|C̃|
e−

1
2 x̃′C̃−1x̃

= e−
1
2 log((2π)n|C̃|) e−

1
2 x̃′C̃−1x̃

= e−0.5(n log(2π)+log(|C̃|)+x̃′C̃−1x̃)

(2)

In other words Ñµ,C(x) = e−0.5(r+q) (3)

with r = n log(2π) + log(|C̃|) (4)

and q = x̃′C̃−1x̃ (5)

Moreover, since V is an orthonormal basis, we have

‖V ′x̃‖2 = ‖x̃‖2
n∑

i=1

(V ′
i x̃)2 = ‖x̃‖2 (6)

where V ′
i x̃ is the usual dot product between the ith eigen-vector and centered input x̃.

Proof : ‖V ′x̃‖2 = (V ′x̃)′(V ′x̃)
= x̃′V V ′x̃

= x̃′Ix̃

= ‖x̃‖2

In addition, having the above eigendecomposition,

we have |C̃| =
n∏

i=1

λ̃i

thus log(|C̃|) =
n∑

i=1

log(λ̃i)
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log(|C̃|) = (n− d)log(σ2) +
d∑

i=1

log(λ̃i) (7)

Replacing 7 in 4, we get

r = n log(2π) + (n− d)log(σ2) +
d∑

i=1

log(λ̃i) (8)

In addition we have

q = x̃′C̃−1x̃

= x̃′(V D̃V ′)−1x̃

= x̃′V D̃−1V ′x̃

=
n∑

i=1

1
λ̃i

(V ′
i x̃)2

=

(
n∑

i=1

(
1
λ̃i

− 1
σ2

)(V ′
i x̃)2

)
+

1
σ2

n∑
i=1

(V ′
i x̃)2

Since λ̃i = σ2 for all i > d, ( 1
λ̃i
− 1

σ2 ) = 0 for i > d. As a consequence the first sum
can be replaced by a sum from 1 to d (instead of from 1 to n). Also from equation 6
the second sum can be replaced by ‖x̃‖2. This yields:

q =
1
σ2
‖x̃‖2 +

d∑
i=1

(
1
λ̃i

− 1
σ2

)(V ′
i x̃)2 (9)

We have thus eliminated the need to store and compute with eigenvectors Vd+1 . . . Vn.

2 Summing up: the correct formulas

To sum this all up, we can compute the density as follows:

Ñµ,C(x) = e−0.5(r+q) (10)

with r = n log(2π) + (n− d)log(σ2) +
d∑

i=1

log(λ̃i) (11)

and q =
1
σ2
‖x̃‖2 +

d∑
i=1

(
1
λ̃i

− 1
σ2

)(V ′
i x̃)2 (12)
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3 Errata for Manifold Parzen article

Typo in the pseudo-code for Mparzen::train step 4) should be λij = σ2 + s2
j

k

instead of σ2 + s2
j

l .

Also, in our initial experiments, we actually considered two possible choices for λ̃i (for
i ≤ d) and σ2:

a) (λ̃1, . . . , λ̃d) = (λ1, . . . , λd) and σ2 = λd+1

which leads to:

r = n log(2π) + (n− d) log(σ2) +
d∑

i=1

log(λi)

q =
1
σ2
‖x̃‖2 +

d∑
i=1

(
1
λi
− 1

σ2
)(V ′

i x̃)2

b) σ2 is a user specified value and (λ̃1, . . . , λ̃d) = (λ1 + σ2, . . . , λd + σ2)

which leads to:

r = n log(2π) + (n− d)log(σ2) +
d∑

i=1

log(λi + σ2)

q =
1
σ2
‖x̃‖2 +

d∑
i=1

(
1

λi + σ2
− 1

σ2
)(V ′

i x̃)2

We mentioned only scenario b) in the Manifold Parzen article [1] (due to space con-
straints). But somehow these two slightly different versions got mixed up in the write-
up, leading to the somewhat inconsistent formulas that appear in the article (taking
r from b) and q from a)). In addition, we mistakenly wrote d log(2π) instead of
n log(2π).

However, after verification, the actual code used to perform the experiments reported
in the article (implementing scenario b)) appears correct.
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