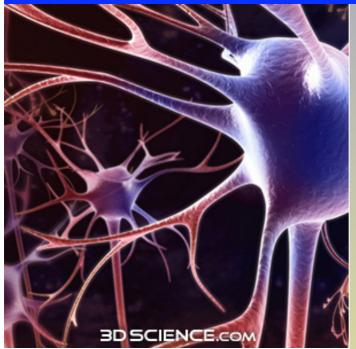
IFT3395/6390 (Prof. Pascal Vincent)

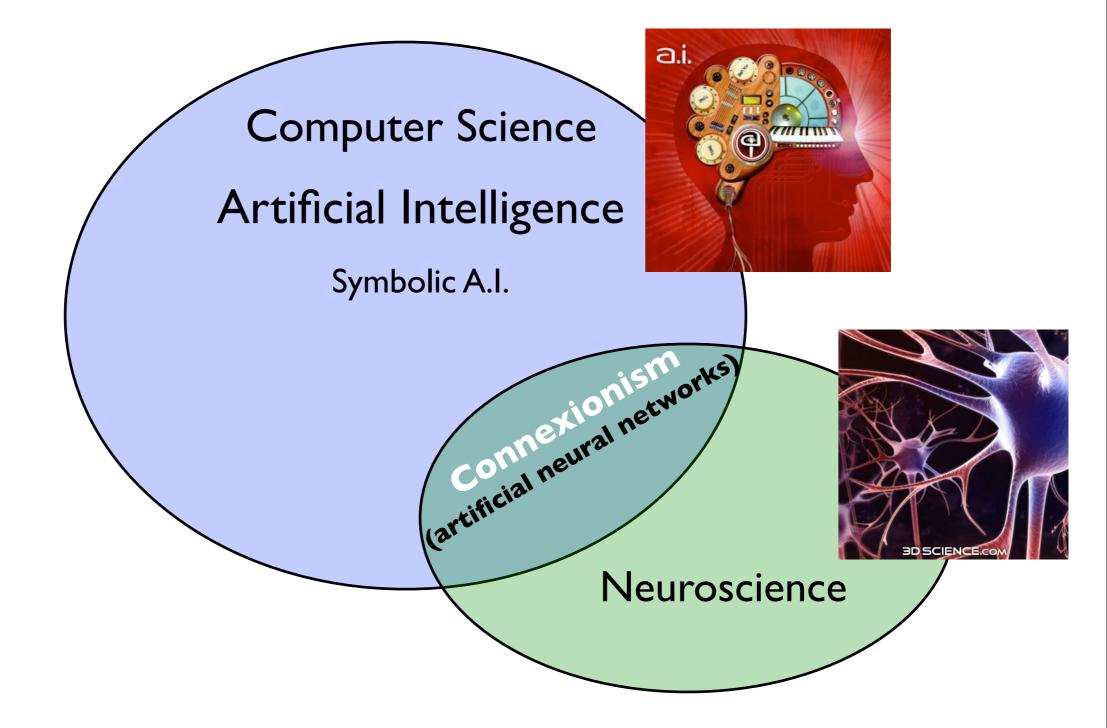


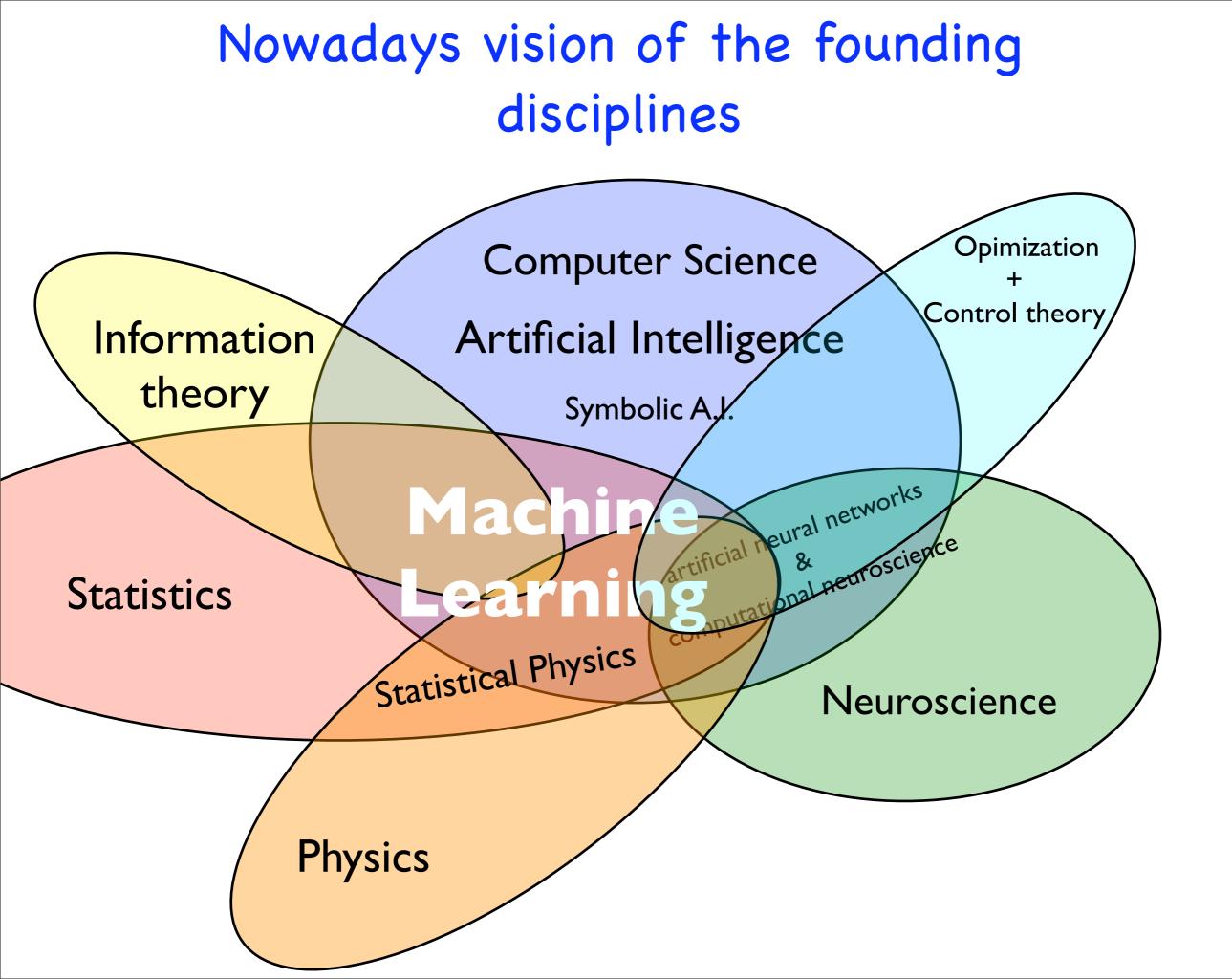
Machine Learning from linear regression to Neural Networks

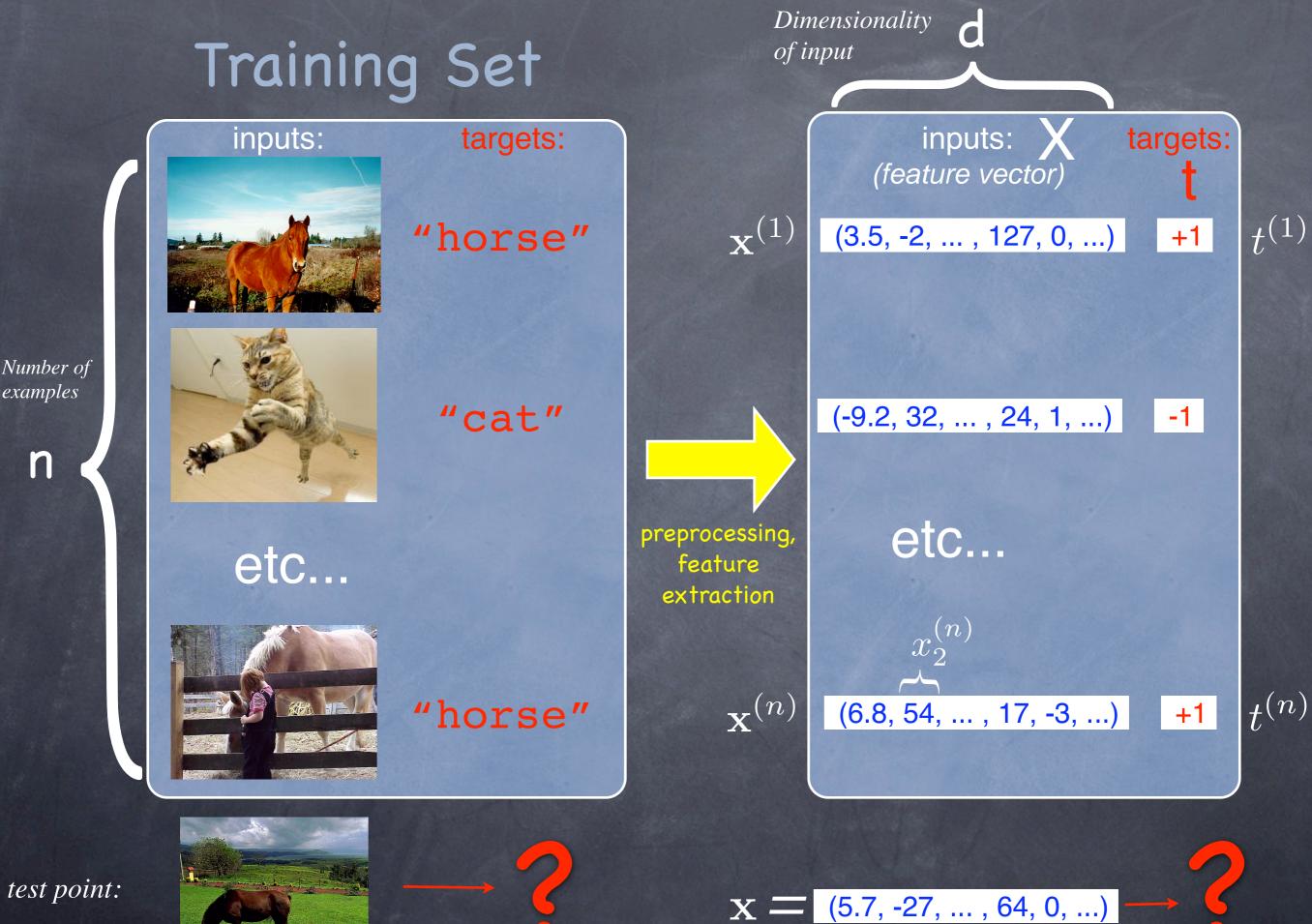
Introduce machine-learning and neural networks (terminology)

- Start with simple statistical models
- Feed Forward Neural Networks (specifically Multilayer Perceptrons)

Historical perspective: back to 1957 (Rosenblatt, "Perceptron")







test point:

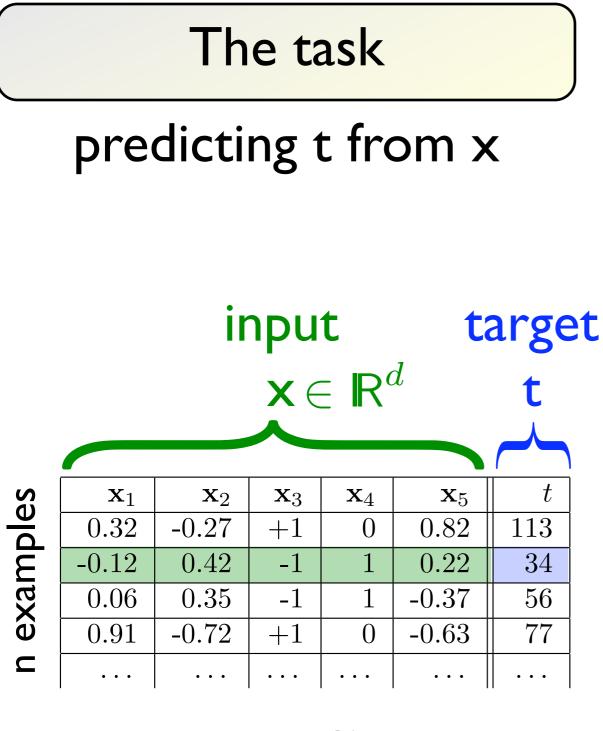
Machine learning tasks

Supervised learning = predict target t from input x

- t represents a category or "class"
 classification (binary or multiclass)
- t is a real value
 regression

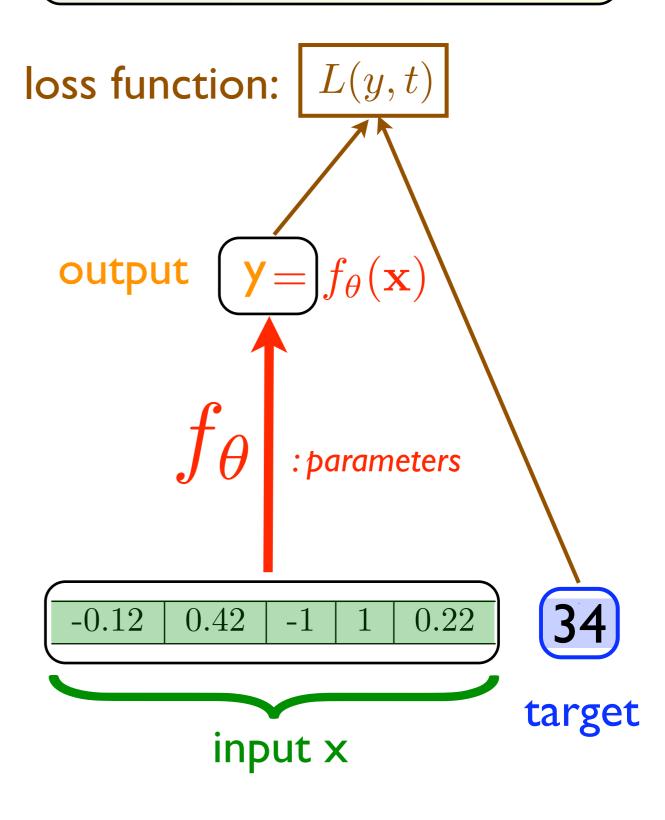
Unsupervised learning: no explicit target t

- model the distribution of x
 density estimation
- capture underlying structure in x
 dimensionality reduction, clustering, etc...



Training Set D_n

Learning a parameterized function f_{θ} that minimizes a loss.



Empirical risk minimization

We need to specify:

- A form for parameterized function f_{θ}
- A specific loss function L(y, t)

We then define the empirical risk as:

$$\hat{R}(f_{\theta}, D_n) = \sum_{i=1}^{n} L(f_{\theta}(\mathbf{x}^{(i)}), t^{(i)})$$

i.e. overall loss over the training set

Learning amounts to finding optimal parameters:

$$\theta^{\star} = \arg\min_{\theta} \hat{R}(f_{\theta}, D_n)$$

Linear Regression A simple learning algorithm

We choose

A linear mapping: $f_{\theta}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$ with parameters: $\theta = \{\mathbf{w}, b\}, \mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ weight vector bias Squared error loss: $L(y, t) = (y - t)^{2}$

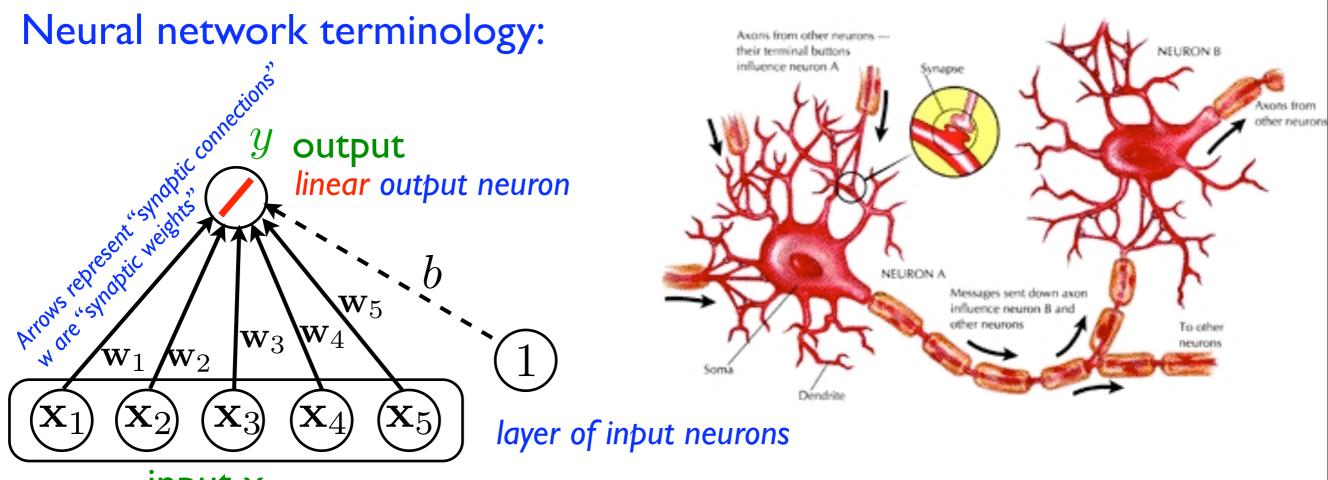
We search the parameters that minimize the overall loss over the training set $\theta^{\star} = rgmin \hat{R}(f_{\theta}, D_n)_{\theta}$

Simple linear algebra yields an analytical solution.

Linear Regression Neural network view

Inuitive understanding of the dot product: each component of x weighs differently on the response.

 $y = f_{\theta}(\mathbf{x}) = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \ldots + \mathbf{w}_d \mathbf{x}_d + b$



input x

Regularized empirical risk

It may be necessary to induce a preference for some values of the parameters over others to avoid "overfitting"

We can define the regularized empirical risk as:

$$\hat{R}_{\lambda}(f_{\theta}, D_{n}) = \left(\sum_{i=1}^{n} L(f_{\theta}(\mathbf{x}^{(i)}), t^{(i)})\right) + \underbrace{\lambda \Omega(\theta)}_{\text{regularization term}}$$
empirical risk

 Ω penalizes more or less certain parameter values $\lambda \geq 0$ controls the amount of regularization

Ridge Regression = Linear regression + L2 regularization

.1

We penalize large weights:

$$\Omega(\theta) = \Omega(\mathbf{w}, b) = \|\mathbf{w}\|^2 = \sum_{j=1}^{a} \mathbf{w}_j^2$$

In neural network terminology: "weight decay" penalty

Again, simple linear algebra yields an analytical solution.

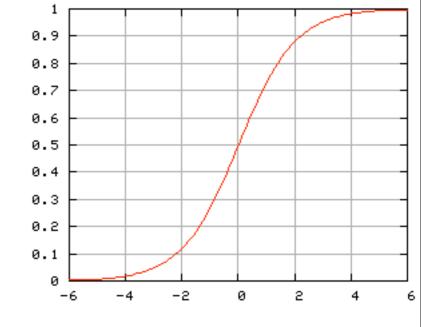
Logistic Regression

If we have a binary classification task: $t \in \{0, 1\}$ We want to estimate conditional probability: $y \simeq P(t = 1 | \mathbf{x})$ $y \in [0, 1]$

We choose

A non-linear mapping:

 $f_{\theta}(\mathbf{x}) = f_{\mathbf{w},b}(\mathbf{x}) = \underset{\text{non-linearity}}{\text{logistic sigmoid}(\langle \mathbf{w}, \mathbf{x} \rangle + b)}$



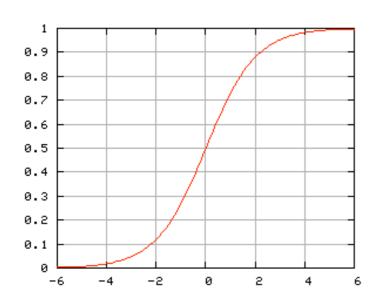
The *logistic sigmoid* is the inverse of the *logit* "link function" in the terminology of Geleralized Linear Models (GLMs).

Cross-entropy loss:

$$L(y,t) = t \ln(y) + (1-t) \ln(1-y)$$

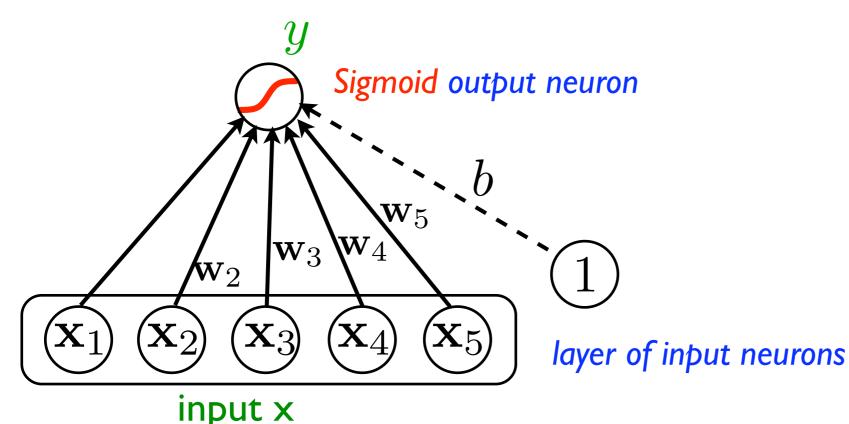
No analytical solution, but optimization is convex

Logistic Regression Neural network view

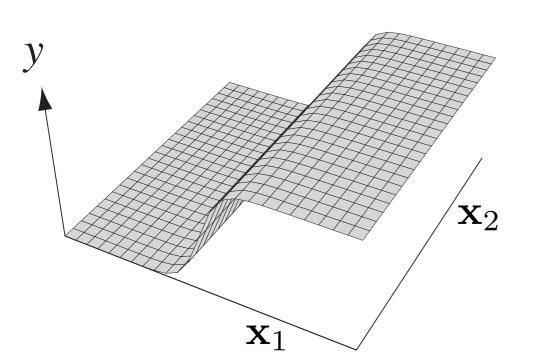


Sigmoid can be viewed as:

- "soft" differentiable alternative to the step function of original Perceptron (Rosenblatt 1957).
- simplified model of "firing rate" response in biological neurons.

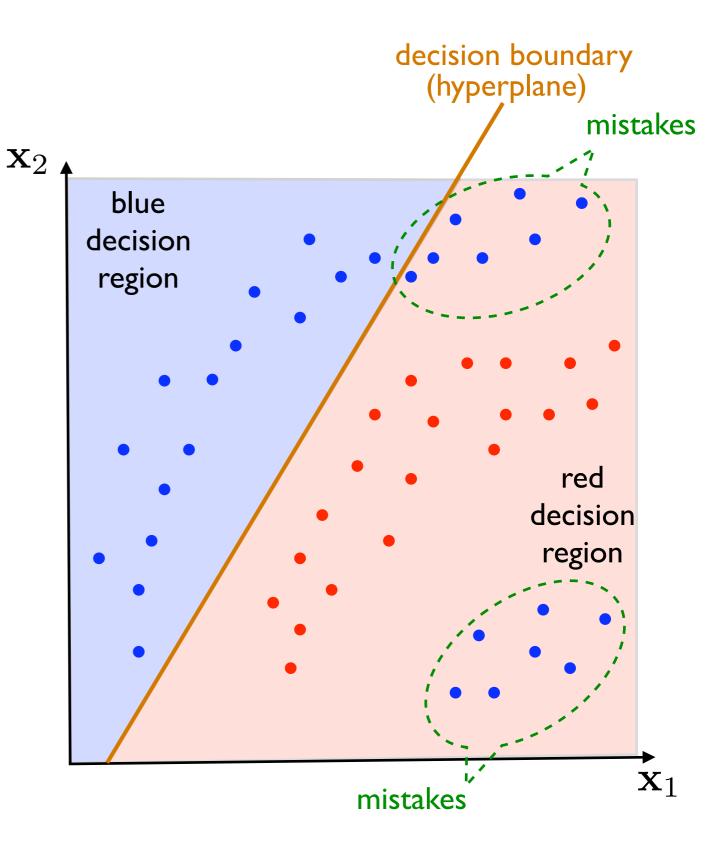


Limitations of Logistic Regression



Only yields "linear" decision boundary: a hyperplane

inappropriate if classes not linearly separable (as on the figure)

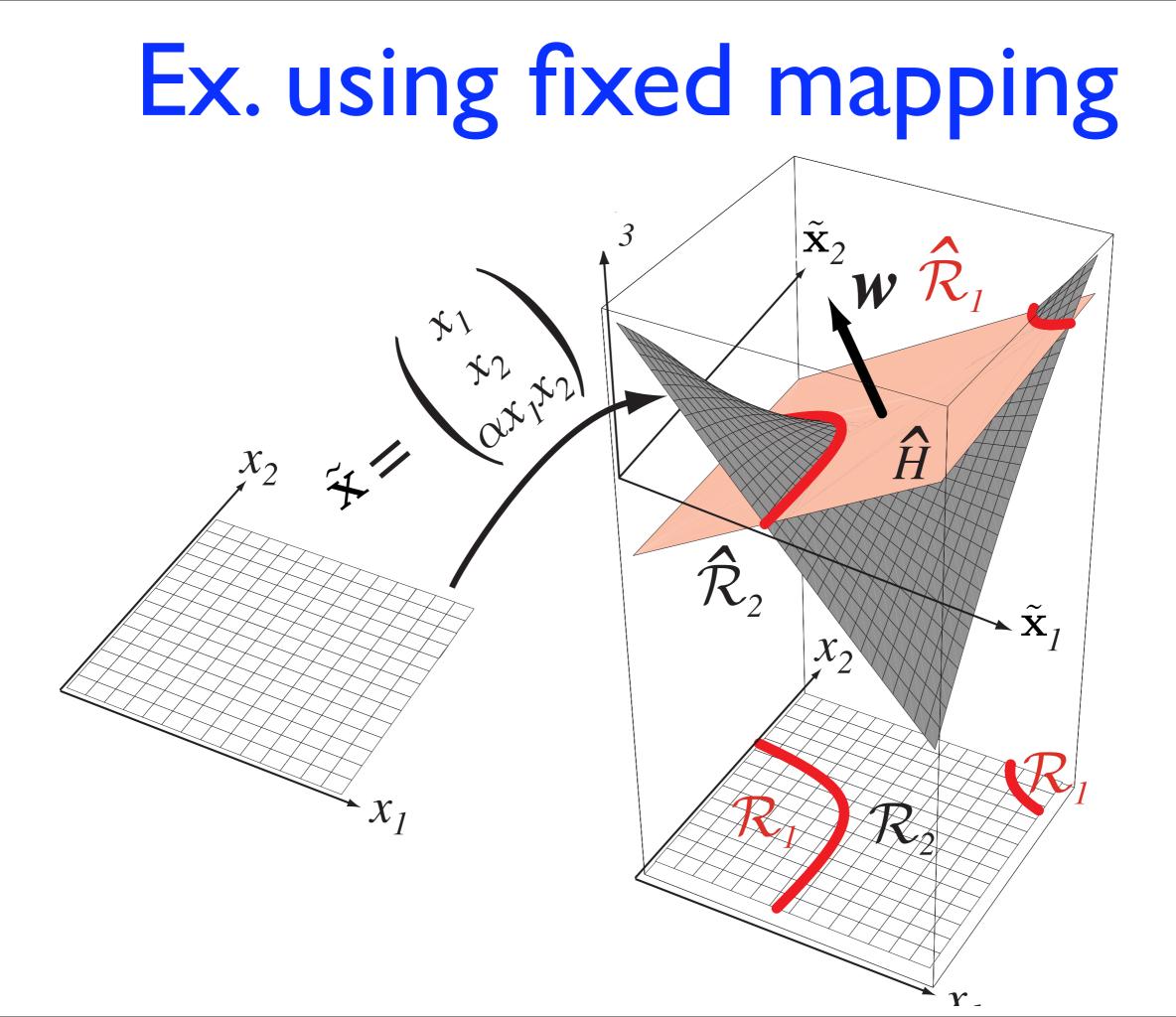


How to obtain non-linear decision boundaries ?

An old technique...

• map x non-linearly to feature space: $\tilde{\mathbf{x}} = \phi(\mathbf{x})$

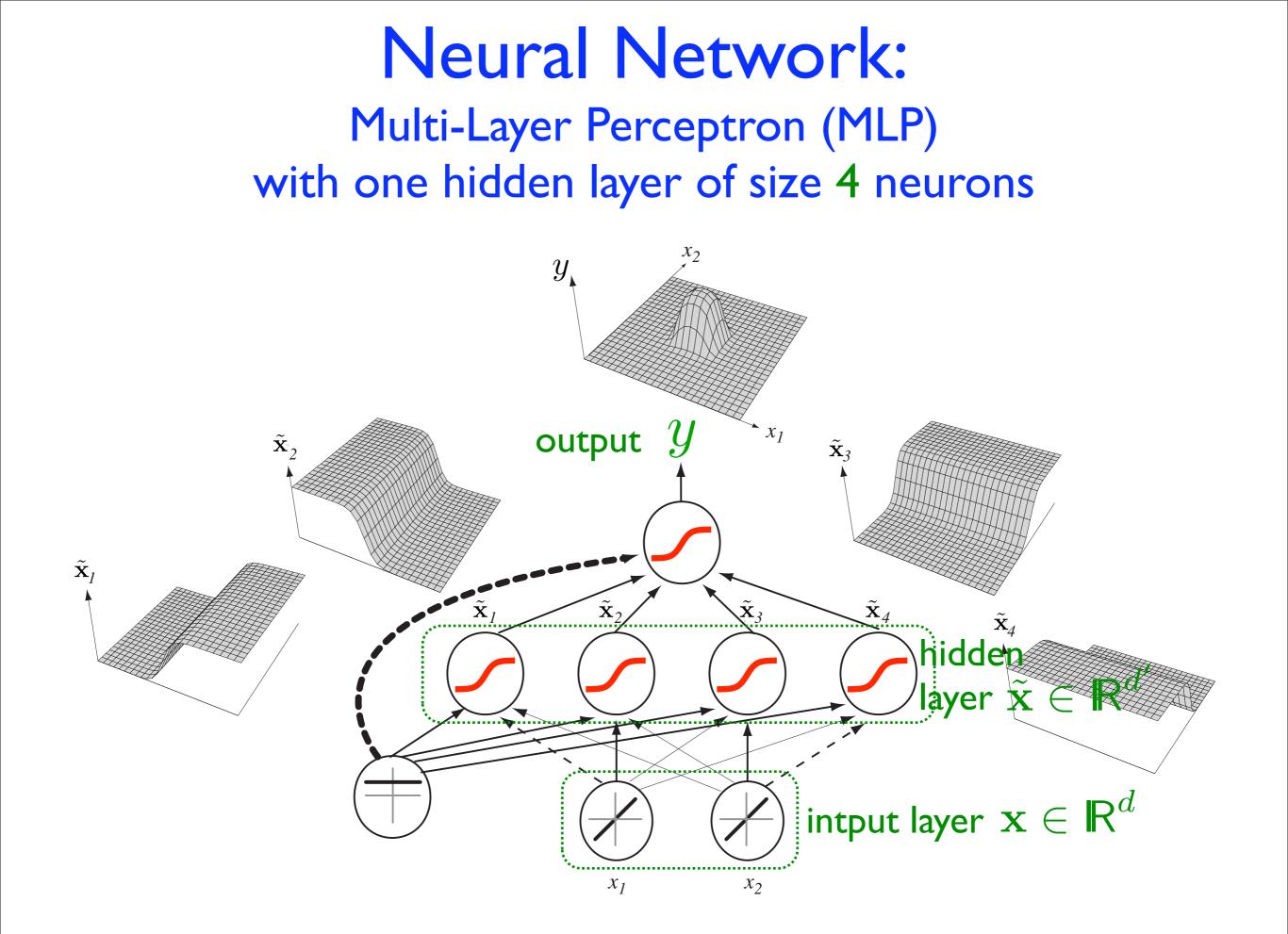
- find separating hyperplane in new space
- hyperplane in new space corresponds to non-linear decision surface in initial x space.



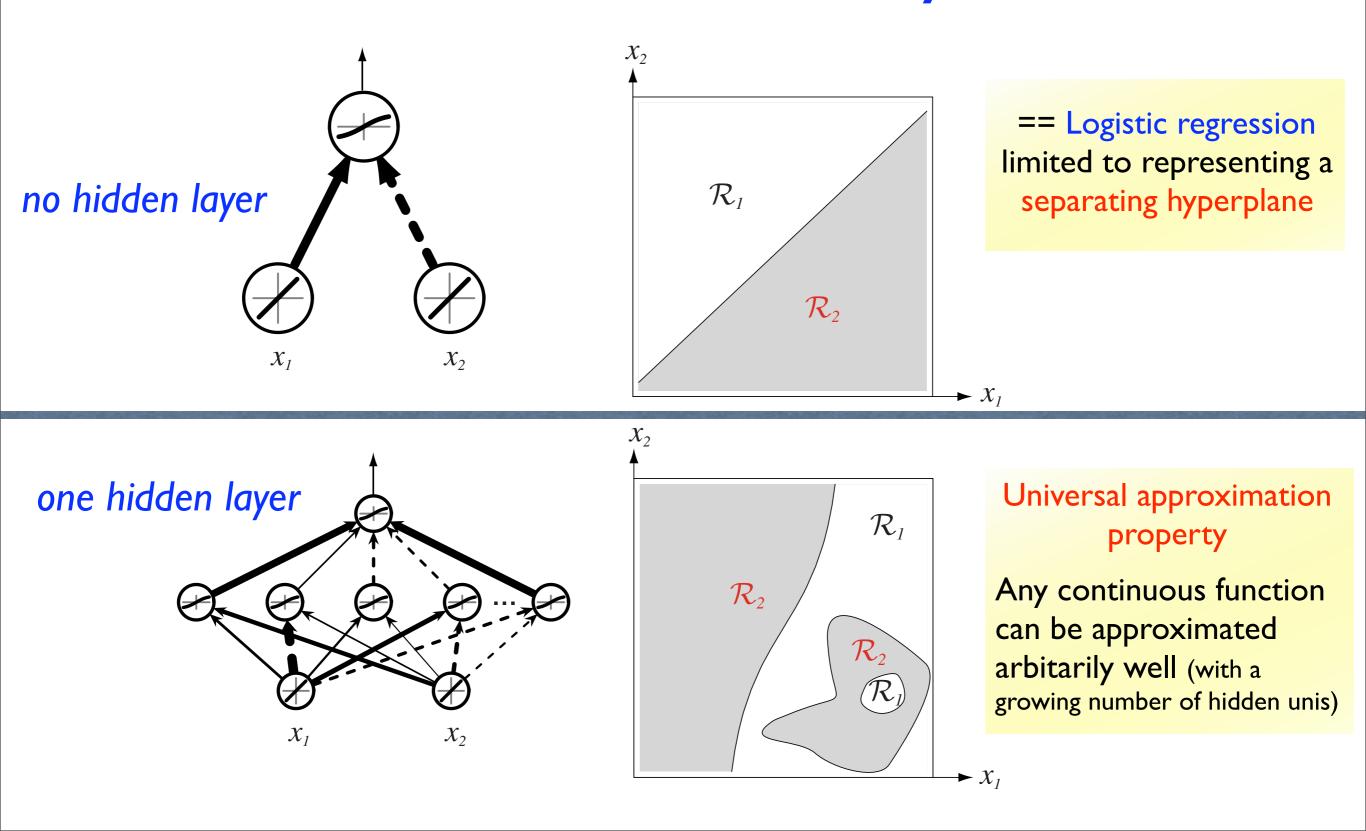
How to obtain non-linear decision boundaries...

Three ways to map x to $\tilde{\mathbf{x}} = \phi(\mathbf{x})$

- Use an explicit fixed mapping
 previous example
- Use an implicit fixed mapping
 Kernel Methods (SVMs, Kernel Logistic Regression ...)
- Learn a parameterized mapping:
 Multilayer feed-forward Neural Networks such as Multilayer Perceptrons (MLP)



Expressive power of Neural Networks with one hidden layer



Neural Network (MLP) with one hidden layer of size d' neurons

Functional form (parametric):

$$y = f_{\theta}(\mathbf{x}) = \text{sigmoid} \left(\langle \mathbf{w}, \tilde{\mathbf{x}} \rangle + b \right)$$

$$\tilde{\mathbf{x}} = \text{sigmoid}(\mathbf{W}^{\text{hidden}}\mathbf{x} + \mathbf{b}^{\text{hidden}})$$

Parameters:

$$d' \times d \qquad d' \times 1$$

$$\theta = \{\mathbf{W}^{\text{hidden}}, \mathbf{b}^{\text{hidden}}, \mathbf{w}, b\}$$

Optimizing parameters on training set (training the network):

$$\theta^{\star} = \arg\min_{\theta} \hat{R}_{\lambda}(f_{\theta}, D_{n}) \\ \left(\sum_{i=1}^{n} L(f_{\theta}(\mathbf{x}^{(i)}), t^{(i)})\right) + \lambda \Omega(\theta) \\ \underset{\text{empirical risk}}{\text{regularization term}} (\text{weight decay})$$

Training Neural Networks

We need to optimize the network's parameters:

$$\theta^{\star} = \arg \min_{\theta} \hat{R}_{\lambda}(f_{\theta}, D_n)$$

- Initialize parameters at random
- Perform gradient descent

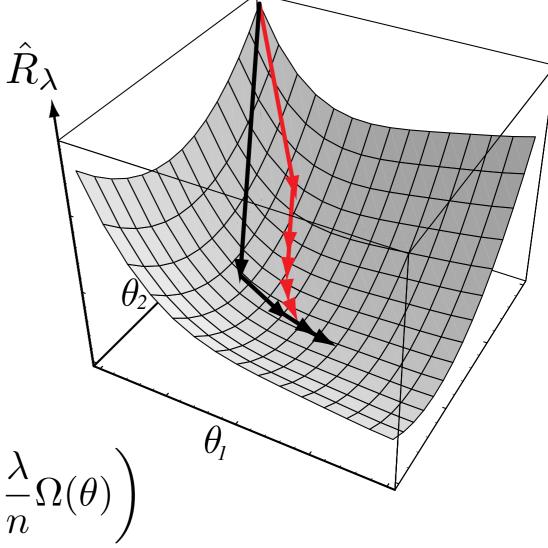
Either batch gradient descent: REPEAT: $\theta \leftarrow \theta - \eta \frac{\partial \hat{R}_{\lambda}}{\partial \theta}$

Or stochastic gradient descent: REPEAT:

Pick i in 1...n

$$\theta \leftarrow \theta - \eta \frac{\partial}{\partial \theta} \left(L(f_{\theta}(\mathbf{x}^{(i)}), t^{(i)}) + \frac{\lambda}{n} \Omega(\theta) \right)$$

Or other gradient descent technique (conjugate gradient, Newton, steps natural gradient, ...)



Hyper-parameters controlling capacity

***** Network has a set of *parameters*: θ

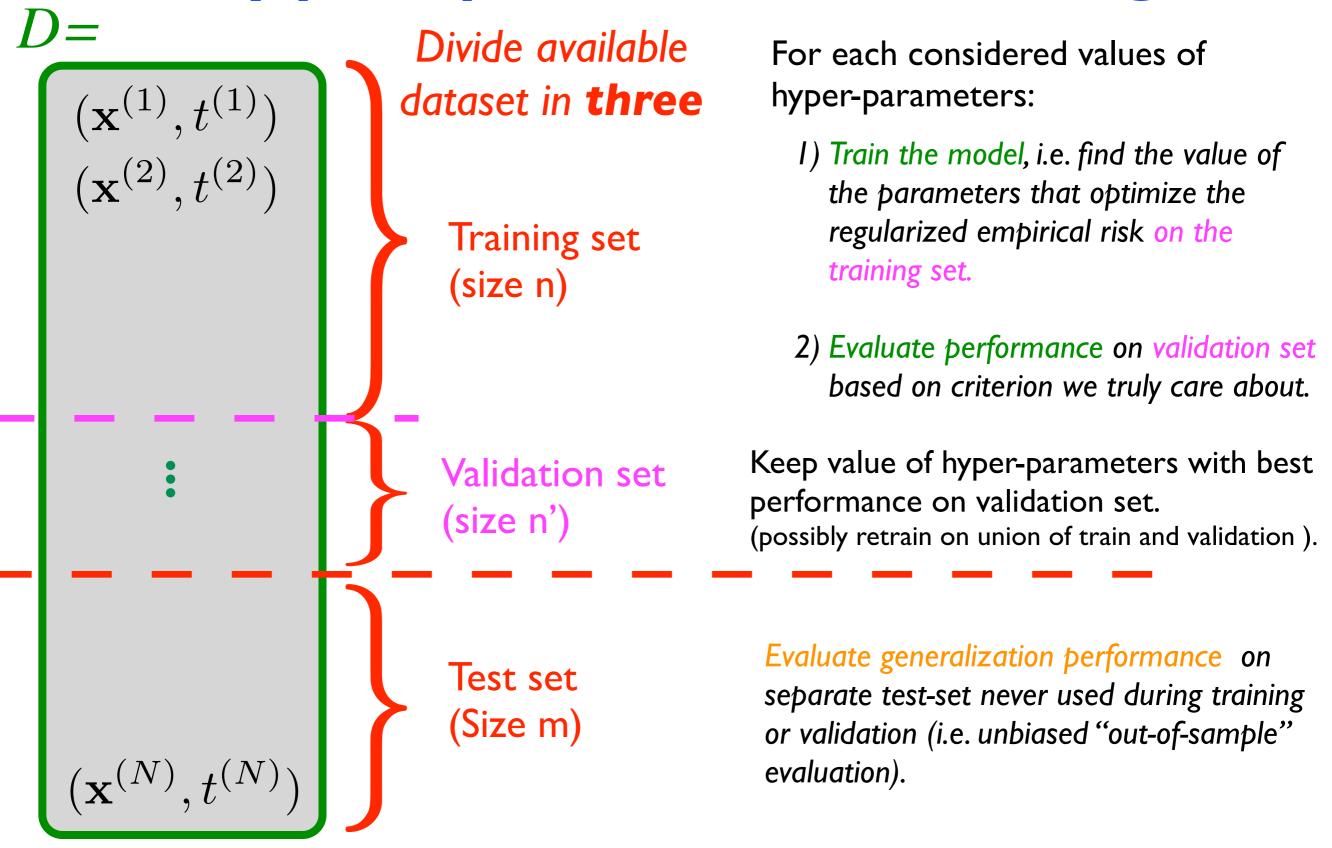
optimized on the training set using gradient descent.

* There are also hyper-parameters that control model "capacity"

- number of hidden units d'
- regularization control λ (weight decay)
- early stopping of the optimization

tuned by a model selection procedure, **not** on training set.

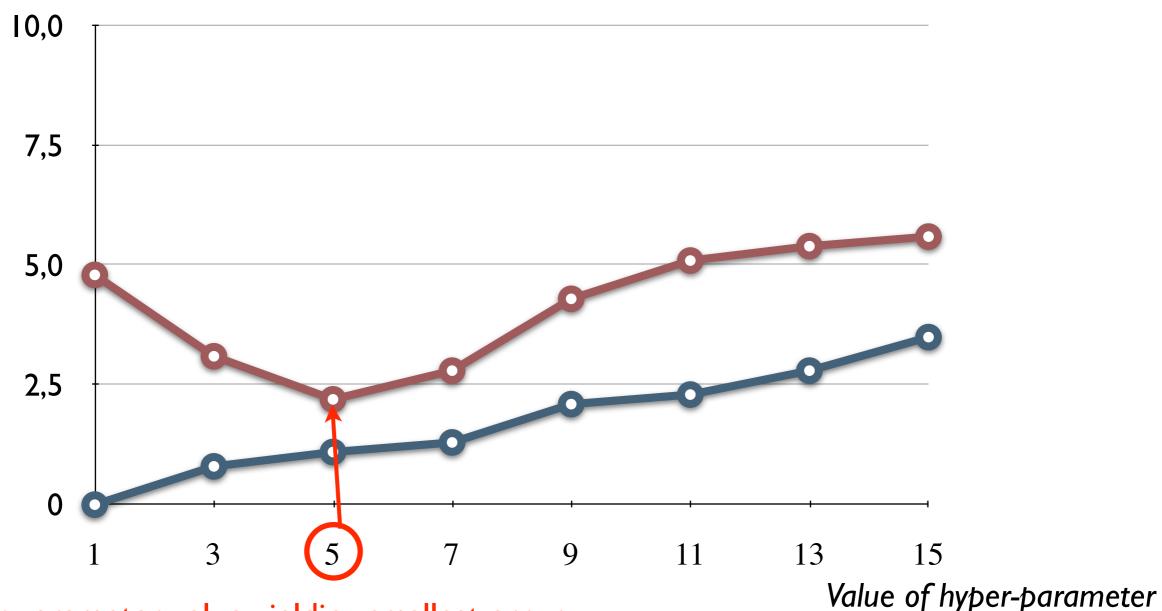
Hyper-parameter tuning



If too few examples, use k-fold cross-validation or leave-one-out ("jack-knife")

Hyper-parameter tuning

- performance (error) on training set
- performance (error) on validation set



hyper-parameter value yielding smallest error on validation set is 5 (whereas it's 1 on the training set)

Summary

- Feed-forward Neural Networks (such as Multilayer Perceptrons MLPs) are parameterized non-linear functions or "Generalized non-linear models"...
- ...trained using gradient descent techniques
- Architectural details and capacity-control hyperparameters must be tuned with proper model selection procedure.
- Data must be preprocessed into suitable format standardization for continuous variable: use $\frac{x-\mu}{\sigma}$ one-hot encoding for categorical variables ex: [0,0,1,0]

Note: there are many other types of Neural Nets...

Neural Networks

Why they matter for data mining

advantages of Neural Networks for data-mining.
 motivating research on learning deep networks.

Advantages of Neural Networks

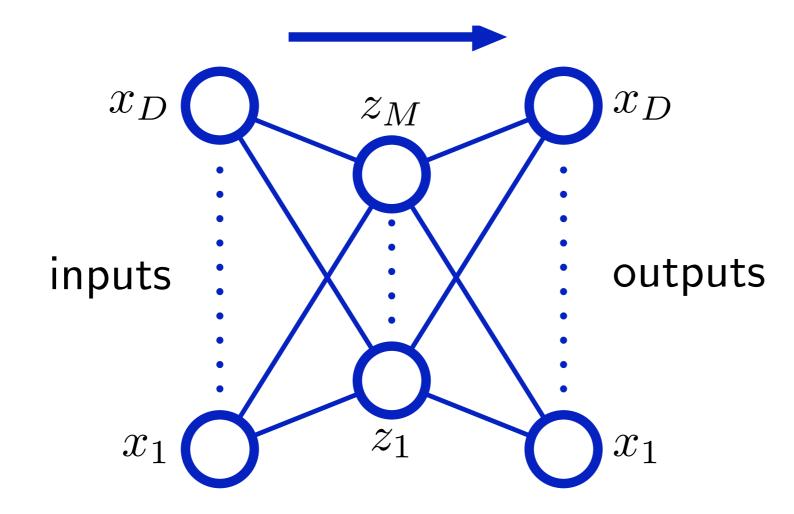
*The power of learnt non-linearity: automatically extracting the necessary features

***Flexibility:** they can be used for

- binary classification
- multiclass classification
- regression
- conditional density modeling (NNet trained to output parameters of distribution of t as a function of x)
- dimensionality reduction
- ... very adaptable framework (some would say too much...)

Ex: using a Neural Net for dimensionality reduciton

The classical *auto-encoder* framework learning a lower-dimensional representation



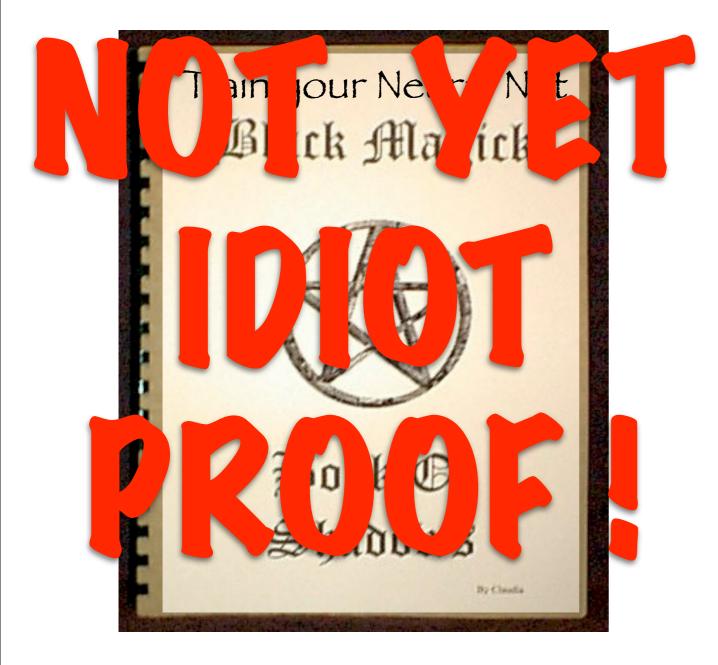
Advantages of Neural Networks (continued)

*Neural Networks scale well

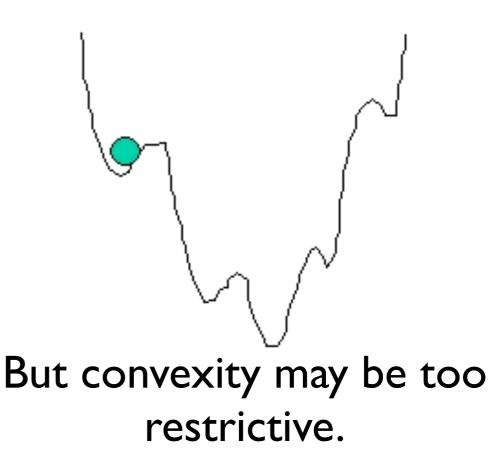
- Data-mining often deals with huge databases
- Stochastic gradient descent can handle these
- Many more modern machine-learning techniques have big scaling issues (e.g. SVMs and other Kernel methods)

Why then have they gone out of fashion in machine learning ?

• Tricky to train (many hyperparameters to tune)

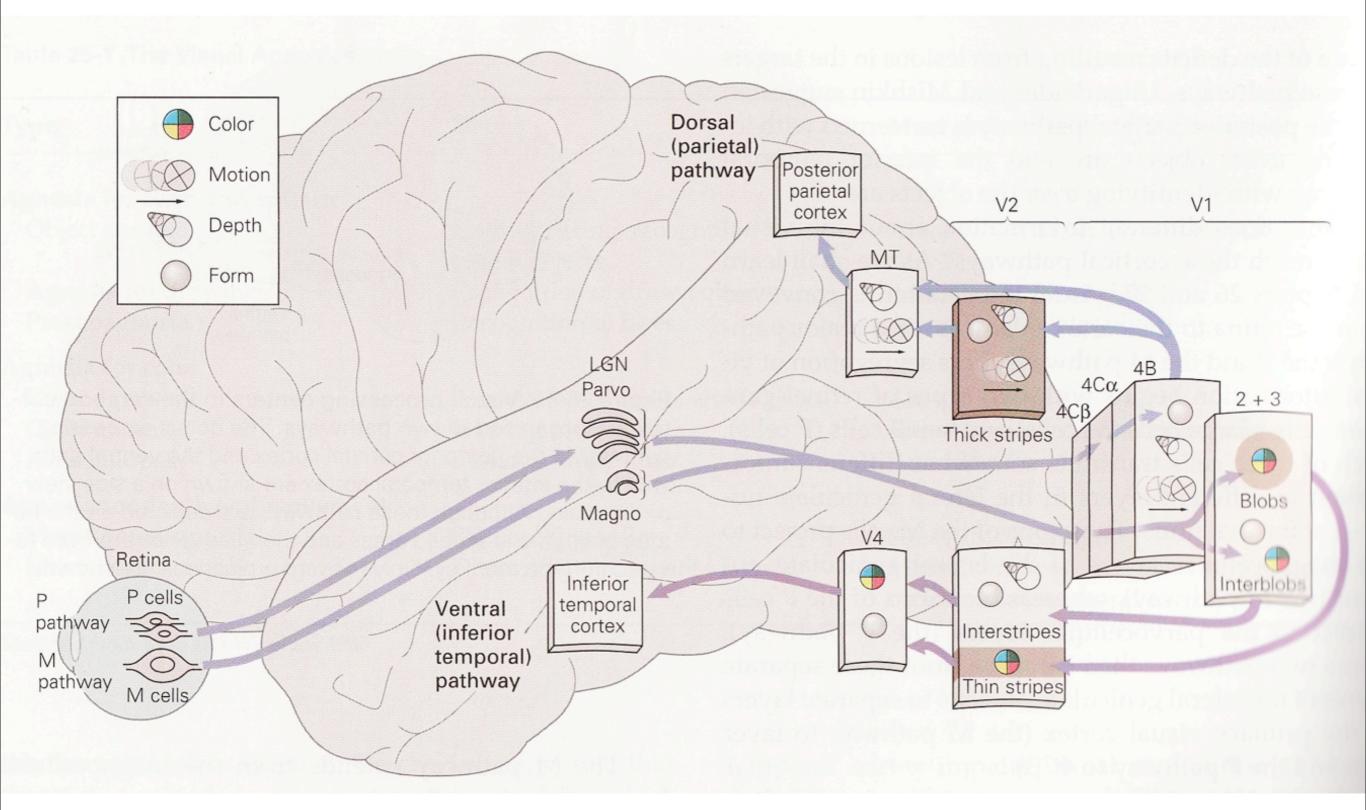


 Non-convex optimization
 local minima: solution depends on where you start...



Convex problems are mathematically nice and easier, but real-world hard problems may require non-convex models.

Example of a deep architecture made of multiple layers, solving complex problems...



The promises of learning deep architectures

- Representational power of functional composition.
- Shallow architectures

 (NNets with one hidden layer, SVMs, boosting, ...)
 can be universal approximators...
- But may require exponentially more nodes than corresponding deep architectures (see Bengio 2007).
- statistically more efficient to learn small deep architectures (fewer parameters) than fat shallow architectures.

The notion of Level of Representation

very high level representation:

