
IFT3395/6390 (Prof. Pascal Vincent)

Machine Learning
from linear regression
to Neural Networks

Introduce machine-learning and neural networks (terminology)

Start with simple statistical models

Feed Forward Neural Networks
(specifically Multilayer Perceptrons)

Computer Science

Artificial Intelligence

Symbolic A.I.

Historical perspective: back to 1957
(Rosenblatt, “Perceptron”)

Neuroscience

Connexionism

(a
rti

ficia
l n

eura
l n

etw
ork

s)

Computer Science

Artificial Intelligence

Symbolic A.I.

Neuroscience

artifi
cial

neural n
etworks

&

computatio
nal neuroscie

nce

Statistics

Physics

Statistical Physics

Information
theory

Machine
Learning

Nowadays vision of the founding
disciplines

 Opimization
+

Control theory

Training Set

“horse”

“horse”

“cat”

etc...

inputs: targets:

{nNumber of

examples

{ dDimensionality

of input

test point:

X

? ?

preprocessing,
feature

extraction

inputs:
(feature vector)

targets:

(3.5, -2, ... , 127, 0, ...) +1

(-9.2, 32, ... , 24, 1, ...) -1

(6.8, 54, ... , 17, -3, ...) +1

etc...

X
t

{x
(n)
2

x(1)

x(n) t(n)

t(1)

 = (5.7, -27, ... , 64, 0, ...) x

Machine learning tasks

• t represents a category or “class”
!classification (binary or multiclass)

• t is a real value
! regression

Supervised learning = predict target t from input x

Unsupervised learning: no explicit target t

• model the distribution of x
!density estimation

• capture underlying structure in x
! dimensionality reduction, clustering, etc...

input
x{ {

target
t

The task

n
 e

x
am

p
le

s

predicting t from x

loss function: L(y, t)

fθ : parameters

t

target{
input x

x1 x2 x3 x5x4

Learning a parameterized
function that minimizes
a loss.

fθ

output y= fθ(x)

-0.12 0.42 -1 1 0.22 34
Training Set Dn

x1 x2 x3 x4 x5 t
0.32 -0.27 +1 0 0.82 113

-0.12 0.42 -1 1 0.22 34
0.06 0.35 -1 1 -0.37 56
0.91 -0.72 +1 0 -0.63 77
.

∈ IRd

Empirical risk minimization
We need to specify:

• A form for parameterized function fθ

• A specific loss function L(y, t)

θ! = arg min
θ

R̂(fθ, Dn)

Learning amounts to finding optimal parameters:

We then define the empirical risk as:

R̂(fθ, Dn) =
n∑

i=1

L(fθ(x(i)), t(i))
i.e. overall loss over the training set

Linear Regression

We choose

fθ(x) = 〈w,x〉 + b with parameters: θ = {w, b}, w ∈ IRd, b ∈ IR

A linear mapping:

Squared error loss:

L(y, t) = (y − t)2
{ dot product

{ {weight vector bias

θ! = arg min
θ

R̂(fθ, Dn)

Simple linear algebra yields an analytical solution.

We search the parameters that minimize the overall loss over the training set

A simple learning algorithm

Ar
ro
ws r

ep
re
se

nt
 “s

yn
ap

tic
 co

nn
ec

tio
ns

”

w a
re
 “s

yn
ap

tic
 w

eig
ht
s”

Linear Regression
Neural network view

each component of x weighs differently on the response.

y = fθ(x) = w1x1 + w2x2 + . . . + wdxd + b

input x

output

x1 x2 x3 x4 x5

w1 w2
w3 w4

w5
b

1

y
linear output neuron

layer of input neurons

Inuitive understanding of the dot product:

Neural network terminology:

Regularized empirical risk

We can define the regularized empirical risk as:

R̂λ(fθ, Dn) =

(
n∑

i=1

L(fθ(x(i)), t(i))

)
+ λΩ(θ)

It may be necessary to induce a preference for some
values of the parameters over others to avoid “overfitting”

{
regularization term

Ω penalizes more or less certain parameter values
λ ≥ 0 controls the amount of regularization

{
empirical risk

Ridge Regression
= Linear regression + L2 regularization

Ω(θ) = Ω(w, b) =‖w‖2 =
d∑

j=1

w2
j

We penalize large weights:

In neural network terminology:
“weight decay” penalty

Again, simple linear algebra yields an analytical solution.

Logistic Regression
If we have a binary classification task:

fθ(x) = fw,b(x) = sigmoid(〈w,x〉 + b)

We choose
A non-linear mapping:

Cross-entropy loss:

L(y, t) = t ln(y) + (1− t) ln(1− y)

t ∈ {0, 1}
We want to estimate conditional probability:

sigmoid(x) =
1

1 + e−x

y ∈ [0, 1]

logistic

{
non-linearity

The logistic sigmoid is the inverse of the logit “link function”
in the terminology of Geleralized Linear Models (GLMs).

y ! P (t = 1|x)

No analytical solution,
but optimization is convex

Logistic Regression
Neural network view

input x

x2 x3 x4 x5

w2
w3 w4

w5
b

1

y
Sigmoid output neuron

layer of input neurons
x1

Sigmoid can be viewed as:

• “soft” differentiable alternative to the step function
of original Perceptron (Rosenblatt 1957).

• simplified model of “firing rate” response in
biological neurons.

Limitations of Logistic Regression

x1

x2

decision boundary

blue
decision
region

red
decision
region

mistakes

mistakes

Only yields “linear” decision
boundary: a hyperplane

! inappropriate if classes
 not linearly separable
 (as on the figure)

6

Réseaux de neurones

• La puissance expressive des réseaux de neurones

y1

y2

y4

y3

y3 y4y2y1

x1 x2

z1

z1

x1

x2

x2

x1

(hyperplane)

How to obtain non-linear
decision boundaries ?

• map x non-linearly to feature space:

• find separating hyperplane in new space

• hyperplane in new space corresponds to
non-linear decision surface in initial x space.

An old technique...

x̃ = φ(x)

x̃

12

• exemple: y=




x1

x2

!x1x2





y2w

R2
R1

R1

R2

R1

x1

x2

x1

x2
y1

y3

Hy =
()x 1

x 2

αx 1
x 2

ˆ

ˆ
ˆ

x̃

x̃

x̃

Ex. using fixed mapping How to obtain non-linear
decision boundaries...

• Use an explicit fixed mapping
!previous example

• Use an implicit fixed mapping
!Kernel Methods (SVMs, Kernel Logistic Regression ...)

• Learn a parameterized mapping:
! Multilayer feed-forward Neural Networks
 such as Multilayer Perceptrons (MLP)

Three ways to map x to x̃ = φ(x)

6

Réseaux de neurones

• La puissance expressive des réseaux de neurones

y1

y2

y4

y3

y3 y4y2y1

x1 x2

z1

z1

x1

x2

x̃

x̃ x̃

x̃x̃ x̃ x̃ x̃

y

youtput

intput layer

hidden
layer

Neural Network:
Multi-Layer Perceptron (MLP)

with one hidden layer of size 4 neurons

x ∈ IRd

x̃ ∈ IRd′

7

Réseaux de neurones

• La puissance expressive des réseaux de neurones

x1 x2

x1

x2

...

x1 x2

R1

R2

R1

R2

R2

R1

x2

x1

deux couches

trois couches

no hidden layer

one hidden layer

Expressive power of Neural Networks
with one hidden layer

Universal approximation
property

Any continuous function
can be approximated
arbitarily well (with a
growing number of hidden unis)

== Logistic regression
limited to representing a

separating hyperplane

Neural Network (MLP)
with one hidden layer of size d’ neurons

θ = {Whidden,bhidden,w, b}
d′ × d

y = fθ(x) = sigmoid (〈w, x̃〉 + b)
x̃ = sigmoid(Whiddenx + bhidden)
{

{ {

Functional form (parametric):

Parameters:

Optimizing parameters on training set (training the network):

(
n∑

i=1

L(fθ(x(i)), t(i))

)
+ λΩ(θ)

{
regularization term

(weight decay)empirical risk

θ! = arg min
θ

R̂λ(fθ, Dn)
{ {

d′ × 1

21

Fonctions discriminantes linéaires

• Descente de Newton

a1

a2

J(a)

R̂λ

θ

θ

Training Neural Networks
We need to optimize the network’s parameters:

θ! = arg min
θ

R̂λ(fθ, Dn)

• Initialize parameters at random

• Perform gradient descent

θ ← θ − η ∂R̂λ
∂θ

Either batch gradient descent:

REPEAT:

θ ← θ − η
∂

∂θ

(
L(fθ(x(i)), t(i)) +

λ

n
Ω(θ)

)

Or stochastic gradient descent:
REPEAT:
 Pick i in 1...n

Or other gradient descent technique
(conjugate gradient, Newton, steps natural gradient, ...)

! Network has a set of parameters:

Hyper-parameters
controlling capacity

• number of hidden units d’

• regularizaiton control (weight decay)

• early stopping of the optimization

θ
! optimized on the training set using gradient descent.

! tuned by a model selection procedure, not on training set.

! There are also hyper-parameters that control model “capacity”

λ

Hyper-parameter tuning

..
.

Divide available
dataset in three

} Test set
(Size m)

1) Train the model, i.e. find the value of
the parameters that optimize the
regularized empirical risk on the
training set.

2) Evaluate performance on validation set
based on criterion we truly care about.

Evaluate generalization performance on
separate test-set never used during training
or validation (i.e. unbiased “out-of-sample”
evaluation).

} Training set
(size n)

} Validation set
(size n’)

For each considered values of
hyper-parameters:

Keep value of hyper-parameters with best
performance on validation set.
(possibly retrain on union of train and validation).

D=

(x(1), t(1))
(x(2), t(2))

(x(N), t(N))

If too few examples, use k-fold cross-validation or leave-one-out (“jack-knife”)

0

2,5

5,0

7,5

10,0

1 3 5 7 9 11 13 15

Erreur d’apprentissage
Erreur de validation

Value of hyper-parameter
hyper-parameter value yielding smallest error

on validation set is 5 (whereas it’s 1 on the training set)

performance (error) on training set

performance (error) on validation set

Hyper-parameter tuning Summary
• Feed-forward Neural Networks (such as Multilayer

Perceptrons MLPs) are parameterized non-linear
functions or “Generalized non-linear models”...

• ...trained using gradient descent techniques

• Architectural details and capacity-control hyper-
parameters must be tuned with proper model
selection procedure.

• Data must be preprocessed into suitable format
standardization for continuous variable: use
one-hot encoding for categorical variables ex: [0, 0, 1, 0]

Note: there are many other types of Neural Nets...

x−µ
σ

Neural Networks

Why they matter
for data mining

advantages of Neural Networks for data-mining.

motivating research on learning deep networks.

!Flexibility: they can be used for

Advantages of
Neural Networks

• binary classification

• multiclass classification

• regression

• conditional density modeling
(NNet trained to output parameters of distribution of t as a function of x)

• dimensionality reduction

• ... very adaptable framework (some would say too much...)

!The power of learnt non-linearity:
 automatically extracting the necessary features

Principal Component Analysis

Nonlinear or non-Gaussian latent variable models

Overview

Some methods

Autoassociative Neural Networks

multilayer perceptron trained to

replicate inputs

because the hidden layer is smaller,

there is necessarily error in the

replication
x1

xD

z1

zM

x1

xD

inputs outputs

minimization of that error gives autoassociative

mapping, and the latent variables (hidden layer

nodes) can be used e.g. as compressed versions of

inputs

equivalent to PCA if network is linear

with nonlinear units and multiple layers, provides a

nonlinear dimensionality reduction method

Mikaela Klami

Ex: using a Neural Net for
dimensionality reduciton

The classical auto-encoder framework
learning a lower-dimensional representation

• Data-mining often deals with huge databases

• Stochastic gradient descent can handle these

• Many more modern machine-learning
techniques have big scaling issues
(e.g. SVMs and other Kernel methods)

!Neural Networks scale well

Advantages of
Neural Networks

(continued)

• Tricky to train (many hyper-
parameters to tune)

Why then have they gone
out of fashion in machine learning ?

Train your Neural Net

• Non-convex optimization
!local minima: solution
 depends on where you start...

NOT YET

IDIOT

PROOF !
Convex problems are mathematically nice and
easier, but real-world hard problems may
require non-convex models.

But convexity may be too
restrictive.

Example of a deep architecture made of multiple
layers, solving complex problems...

• Representational power of functional composition.

• Shallow architectures
(NNets with one hidden layer, SVMs, boosting, ...)
can be universal approximators...

• But may require exponentially more nodes than
corresponding deep architectures (see Bengio 2007).

• ! statistically more efficient to learn small deep
architectures (fewer parameters) than fat shallow
architectures.

The promises of learning
deep architectures

The notion of

Level of

Representation

