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Course Introduction

� Welcome

� Administration

– Handout

– Books

– Assignments

– Tutorials

– Course rep(s)

Relationships between courses

PMR Probabilistic modelling and reasoning. Focus
on probabilistic modelling. Learning and
inference for probabilistic models, e.g.
Probabilistic expert systems, latent variable
models, Hidden Markov models, Kalman filters,
Boltzmann machines.

LfD1 Learning from Data 1. Basic introductory
course on supervised and unsupervised
learning

LfD2 Learning from Data 2. Focus on
Reinforcement Learning, and advanced
supervised learning methods

DME Develops ideas from LfD1, PMR to deal with
real-world data sets. Also data visualization
and new techniques.

Dealing with Uncertainty

� The key foci of this course are

1. The use of probability theory as a calculus
of uncertainty

2. The learning of probability models from
data

� Graphical descriptions are used to define
(in)dependence

� Probabilistic graphical models give us a
framework for dealing with hidden-cause (or
latent variable) models

� Probability models can be used for
classification problems, by building a
probability density model for each class

Example 1: QMR-DT

diseases

symptoms

Shaded nodes represent observations

� Diagnostic aid in the domain of internal
medecine

������� diseases, � ����� symptom nodes

� Task is to infer diseases given symptoms



Example 2: Inference for
Automated Driving
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� Model of a vision-based lane sensor for car
driving

� Dynamic belief network—performing inference
through time

� See Russell and Norvig, � 17.5

Further Examples

� Automated Speech Recognition using Hidden
Markov Models
acoustic signal � phones � words

� Detecting genes in DNA (Krogh, Mian,
Haussler, 1994)

� Tracking objects in images (Kalman filter and
extensions)

� Troubleshooting printing problems under
Windows 95 (Heckerman et al, 1995)

� Robot navigation: inferring where you are

Probability Theory

� Why probability?

� Events, Probability

� Variables

� Joint distribution

� Conditional Probability

� Bayes’ Rule

� Inference

� Reference: e.g. Russell and Norvig, chapter 14

Why probability?

Even if the world were deterministic, probabilistic
assertions summarize effects of

� laziness: failure to enumerate exceptions,
qualifications etc.

� ignorance: lack of relevant facts, initial
conditions etc.

Other approaches to dealing with uncertainty

� Default or non-monotonic logics

� Certainty factors (as in MYCIN) – ad hoc

� Dempster-Shafer theory

� Fuzzy logic handles degree of truth, not
uncertainty



Events
� The set of all possible outcomes of an experiment is

called the sample space, denoted by
�

� Events are subsets of
�

� If � and � are events, ����� is the event “ � and � ”;����� is the event “ � or � ”; �
	 is the event “not � ”

� A probability measure is a way of assigning probabilities
to events s.t

– �
��������� , ��� � �����
– If ���������

��������������������� �!�������
i.e. probability is additive for disjoint events

� Example: when two fair dice are thrown, what is the
probability that the sum is 4?

Variables
� A variable takes on values from a collection of mutually

exclusive and collectively exhaustive states, where each
state corresponds to some event

� A variable " is a map from the sample space to the set
of states

� Examples of variables

– Colour of a car #%$'&)(+*-,�.+(/(/0-* .1(/2
– Number of children in a family �3*1�4*657*689*�:7*6;9*%<3*>=?<
– Toss two coins, let "@��� number of heads �BA . X can

take on the values 0, 1 and 4.

� Random variables can be discrete or continuous

� Use capital letters to denote random variables and lower
case letters to denote values that they take, e.g.����"@�DC)�

Probability: Frequentist and
Bayesian

� Frequentist probabilities are defined in the
limit of an infinite number of trials

� Example: “The probability of a particular coin
landing heads up is 0.43”

� Bayesian (subjective) probabilities quantify
degrees of belief

� Example: “The probability of it raining
tomorrow is 0.3”

� Not possible to repeat “tomorrow” many times

� Frequentist interpretation is a special case

Joint distributions

� Properties of several random variables are
important for modelling complex problems

� Suppose EGFHFHIKJ L7M4JON and PQL7R7S�IBT are the
variables: U V1VKW�XHY[ZBX (\� W .1&)(

U V1VKW�X]Y[Z>X (^�`_ Y $ba/(c Y[d�ebW�f � W .1&)( �9g �]: �3g �h<c Y[d�ebW�f ��_ Y $ba/( �9g �i� �3g j)k
� Notation
���
U V1VKW�X]Y[Z>X (\� W .K&)(+* c Y[d�ebW�f �`_ Y $baK(1�����9g �-�

� Marginal probabilities, the sum rule

l�m/n!o�prqtsul�m/nwv+xyo
e.g.

lym EGFhFHIKJ L7M4JON p IBzH{|N o�p ?



Conditional Probability

� Let � and � be two disjoint subsets of
variables, such that

lym��^o�� � . Then the
conditional probability distribution (CPD) of �
given � p��

is given by

lym � p��
	 � p��^o�prlym��
	 �^o�p lym��\v
�^o
lym��^o

� Product rule

lym � v � o�prlym � o[lym � 	 � o�p lym � o�lym � 	 � o

� Example: In the dental example, what islym PQL7R7S�IBT p I>zH{|N 	 EGFhFHI/J LiM[JON p I>zH{|N o ?

� Chain rule is derived by repeated application of
the product rule

����"��/*Bg>g>g>*�"
� ���D����"��/*>gBg>g>*�" ��� �>�%����"
��� "��>*>g>gBg>*�" ��� �>�
�D����" � *>gBg>g>*�" ��� A �%����" ��� � � " � *>gBg>g>*�" ��� A �
����" � � " � *Bg>g>gB*�" ��� � �

�@g>g>g
� ��

� � � ����" � � "��>*>g>gBg>*�" � � �>�

Bayes’ Rule
� From the product rule,

������� �Q��� ������� �G�B�
���G������Q�
� From the sum rule the denominator is

�����Q��� q � ������� �G�%�����G�
� Why is this useful?

� For assessing diagnostic probability from causal
probability

��� c Y &)a/(!� " _H_H( Z6W ��� �
�#" _h_H( Z%W � c Y &)a/(1�B��� c Y &)a/(1����#"�_h_H( Z6W �
� Example: let $ be meningitis, % be stiff neck

���&$'� %O�|� ���&%(� $��B���#$���
�&%O� � �3g j�)Q�9g �)�h�-��3g'� ���3g �)�h�hj
Note: posterior probability of meningitis still very small

Evidence: from Prior to Posterior

� Prior probability
lym PQL7R7S�I>T p I>zH{ N o�p �+*�,

� After we observe EGFhFHI/J LiM4JON p IBzh{ N , we
obtain the posterior probabilitylym PQL7R7S�IBT p I>zH{|N 	 EGFhFHI/J LiM[JON p I>zH{|N o

� This statement is dependent on the fact that
EGFhFHIKJ L7M4JON p I>zH{ N is all I know

� Revised probability of toothache if, say, I have
a dental examination....

� Some information may be irrelevant, e.g.
��� c Y[d�ebW�f � W .1&)(-�

U V1V1W�XHY[ZBX (
� W .K&)( *#. e Z (
/ V $'$7�D;3�
�D��� c Y[d�ebW�f � W .K&)(-�

U V1VKW�XHY[ZBX (^� W .1&h(+�



Inference from joint distributions

� Typically, we are interested in the posterior
joint distribution of the query variables � given
specific values � for the evidence variables

�

� Hidden variables � p ���'��� �

� Sum out over hidden variables
lym � 	 � p � o�� lym � v � p � o

prq
�
lym � v � p
	 v � p � o

� Obvious problems:
1) Worst-case time complexity � m
� 0 o where

�
is the largest arity
2) Space complexity � m
� 0 o to store the joint
distribution
3) How to find the numbers for � m
� 0 o
entries???

Decision Theory

������� ��� ����������� �"! �$# �%��&�'(&�� ) � *+!��,����� �"! �.- */� ) � *+!��,����� �"!

� When making actions, an agent will have
preferences about different possible outcomes

� Utility theory can be used to represent and
reason with preferences

� A rational agent will select the action with the
highest expected utility

Summary

� Course foci:

– Probabilty theory as calculus of uncertainty

– Learning probabilistic models form data

� Events, random variables

� Joint, conditional probability

� Bayes rule, evidence

� Decision theory


