Glen Berseth

I am an assistant professor at the University de Montreal and Mila. My research explores how to use deep learning and reinforcement learning to develop generalist robots.

#CrowdSimultion Articles


Evaluating and Optimizing Evacuation Plans for Crowd Egress

Vincius J Cassol, Estêvão Smania Testa, Cláudio Rosito Jung, Muhammad Usman, Petros Faloutsos, Glen Berseth, Mubbasir Kapadia, Norman I Badler, Soraia Raupp Musse

Evacuation planning is an important and difficult task in building design. The proposed framework can identify optimal evacuation plans using decision points, which control the ratio of agents that select a particular route at a specific spatial location. The authors optimize these ratios to achieve the best evacuation based on a quantitatively validated metric for evacuation performance. This metric captures many of the important aspects of an evacuation: total evacuation time, average evacuation time, agent speed, and local agent density. The proposed approach was validated using a night club model that incorporates real data from an actual evacuation.


Towards Computer Assisted Crowd Aware Architectural Design

Brandon Haworth, Muhammad Usman, Glen Berseth, Mahyar Khayatkhoei, Mubbasir Turab Kapadia, Petros Faloutsos

We present a preliminary exploration of an architectural optimization process towards a computational tool for designing environments (e.g., building floor plans). Using dynamic crowd simulators we derive the fitness of architectural layouts. The results of the simulation are used to provide feedback to a user in terms of crowd animation, aggregate statistics, and heat maps. Our approach automatically optimizes the placement of environment elements to maximize the flow of the crowd, while satisfying constraints that are imposed by the user (e.g., immovable walls or support bearing structures). We take steps towards user-in-the-loop optimization and design of an environment by applying an adaptive refinement approach to reduce the search space of the optimization. We perform a small scale user study to obtain early feedback on the performance and quality of our method in contrast with a manual approach.


ACCLMesh: Curvature-Based Navigation Mesh Generation

Glen Berseth, Mubbasir Kapadia, Petros Faloutsos

The proposed method robustly and efficiently computes a navigation mesh for arbitrary and dynamic 3D environments based on curvature. This method addresses a number of known limitations in state-of-the-art techniques to produce navigation meshes that are tightly coupled to the original geometry, incorporate geometric details that are crucial for movement decisions and can robustly handle complex surfaces. The method is integrated into a standard navigation and collision-avoidance system to simulate thousands of agents on complex 3D surfaces in real-time.