Glen Berseth

I am an assistant professor at the University de Montreal and Mila. My research explores how to use deep learning and reinforcement learning to develop generalist robots.

#Optimization Articles


Interactive Architectural Design with Diverse Solution Exploration

Glen Berseth, Brandon Haworth, Muhammad Usman, Davide Schaumann, Mahyar Khayatkhoei, Mubbasir Turab Kapadia, Petros Faloutsos

In architectural design, architects explore a vast amount of design options to maximize various performance criteria, while adhering to specific constraints. In an effort to assist architects in such a complex endeavour, we propose IDOME, an interactive system for computer-aided design optimization. Our approach balances automation and control by efficiently exploring, analyzing, and filtering space layouts to inform architects' decision-making better. At each design iteration, IDOME provides a set of alternative building layouts which satisfy user-defined constraints and optimality criteria concerning a user-defined space parametrization. When the user selects a design generated by IDOME, the system performs a similar optimization process with the same (or different) parameters and objectives. A user may iterate this exploration process as many times as needed. In this work, we focus on optimizing built environments using architectural metrics by improving the degree of visibility, accessibility, and information gaining for navigating a proposed space. This approach, however, can be extended to support other kinds of analysis as well. We demonstrate the capabilities of IDOME through a series of examples, performance analysis, user studies, and a usability test. The results indicate that IDOME successfully optimizes the proposed designs concerning the chosen metrics and offers a satisfactory experience for users with minimal training.


Gamification of Crowd-Driven Environment Design

Michael Brandon Haworth, Muhammad Usman, Davide Schaumann, Nilay Chakraborty, Glen Berseth, Petros Faloutsos, Mubbasir Kapadia

This paper describes using human creativity within a gamified collaborative design framework to address the complexity of predictive environment design. This framework is predicated on gamifying crowd objectives and presenting environment design problems as puzzles. A usability study reveals that the framework is considered usable for the task. Participants were asked to configure an environment puzzle to reduce an important crowd metric, the total egress time. The design task was constructed to be straightforward and uses a simplified environment as a probe for understanding the utility of gamification and the performance of collaboration. Single-player and multiplayer designs outperformed both optimization and expert-sourced designs of the same environment and multiplayer designs further outperformed the single-player designs. Single-player and multiplayer iterations followed linear and exponential decrease trends in total egress time respectively. Our experiments provide strong evidence towards an interesting novel approach of crowdsourcing collaborative environment design.


Evaluating and Optimizing Level of Service for Crowd Evacuations

Brandon Haworth, Muhammad Usman, Glen Berseth, Mubbasir Turab Kapadia, Petros Faloutsos

Computational approaches for crowd analysis and environment design need robust measures for characterizing the relation between environments and crowd flow. Level of service (Level of Service) is a standard indicator for characterizing the service afforded by environments to crowds of specific densities, and is widely used in crowd management and urban design. However, current Level of Service indicators are qualitative and rely on expert analysis. In this paper, we perform a systematic analysis of Level of Service for synthetic crowds. The flow-density relationships in crowd evacuation scenarios are explored with respect to three state-of-the-art steering algorithms. Our results reveal that Level of Service is sensitive to the crowd behavior, and the configuration of the environment benchmark. Following this study, we automatically optimize environment elements to maximize crowd flow, under a range of Level of Service conditions. The steering algorithm, the number of optimized environment elements, the scenario configuration and the Level of Service conditions affect the optimal configuration of environment elements. We observe that the critical density of crowd simulators increases due to the optimal placement of pillars, thereby effectively increasing the Level of Service of environments at higher crowd densities. Depending on the simulation technique and environment benchmark, pillars are configured to produce lanes or form wall-like structures, in an effort to maximize crowd flow. These experiments serve as an important precursor to computational crowd optimization and management and motivate the need for further study using additional real and synthetic crowd datasets across a larger representation of environment benchmarks.


Characterizing and Optimizing Game Level Difficulty

Glen Berseth

In this work we parameterized the configuration of a game level. With the parameterization we optimized aspects of the game level to change a players expected difficulty. Given specific constrains on the configuration of the game level we can produce game levels with a varying degree of difficulty.